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Steady-State Wave Propagation
in Multilayered Viscoelastic
Media Excited by a Moving
Dynamic Distributed Load
An analytical solution of steady-state dynamic response of a multilayered viscoelastic
medium to a moving distributed load is obtained using a novel approach that combines
transfer matrix method with Sun’s convolution representation integrated over impulse
response function of the layered medium. The layered media under consideration include
elastic and viscoelastic media with four different viscoelastic constitutive models, while
the moving load is allowed to have a circular spatial distribution, which is more realistic
for mimicking tire footprint than a commonly used point load. Efficient numerical algo-
rithms based on fast evaluation of various integral transformations and their inversions
are developed and validated through numerical example. �DOI: 10.1115/1.3086586�

Keywords: multilayered medium, viscoelastic, steady-state response, wave equation, in-
tegral transform, convolution

1 Introduction
Nowadays highway and airport pavement design is based on

static analysis of multilayered elastic media �1�. With the promo-
tion and deployment of high-speed surface transportation, dy-
namic effects of moving vehicular load on transportation infra-
structure become much more significant than ever before �2–8�.
To develop a more accurate structure design method for highway,
airport, and bridges, dynamics of pavements needs to be investi-
gated thoroughly. A multilayered elastic medium is a commonly
used physical model for pavements. The study of dynamic re-
sponses of a multilayered medium has been a subject of great
interest since 1950s �9�. Thomson �10� and Haskell �11� devel-
oped a transfer matrix method to study the propagation of waves
in layered elastic media. Thomson–Haskell transfer matrix
method is numerically deficient for thicker layers and/or higher
frequencies. Kausel and Peek �12� extended the transfer matrix
method by proposing a stiffness matrix method, which uses sec-
ond order approximation to replace transcendent functions in the
solution. Due to the adoption of second order approximation, the
stiffness matrix method is able to evaluate the integral analytically
in the frequency wavenumber domain, allowing more efficient
numerical computation. Kennett �13� proposed a numerically
more robust method.

Based on Biot’s formulation for a multilayered porous medium
�14,15�, applied Fourier transform to analyze dynamic response of
a saturated soil deposited to a moving load �16,17� investigated a
similar problem of dynamic response of a poroelastic soil medium
under a moving load. The solution is approximately estimated by
the superposition of an elastodynamic problem with modified
elastic constants and mass density for the whole domain and a
diffusion problem for the pore fluid pressure confined to a bound-
ary layer near the free surface of the medium. De Barros and Luco
�18� evaluated dynamic displacements of a multilayered medium
to a moving line load at a constant velocity using Fourier synthe-
sis of the frequency response. Sun �2� applied integral transform
to study the general theory of deterministic and stochastic moving

load problem for one-, two-, and three-dimensional applications.
Some fundamental results of moving load problem were given by
Sun and Greenberg �3�. Lefeuve-Mesgouez et al. �19� took advan-
tage of Helmholtz decomposition and fast Fourier transform and
investigated the transmission of ground vibration due to a moving
harmonic strip load rigidly attached to the surface of an elastic
half-space. A review is given in Ref. �20� on methodologies for
moving load induced vibration in half-spaces.

Pak and Guzina �21� studied three-dimensional wave propaga-
tion problem of a vertically-heterogeneous elastic half-space with
the aid of a displacement-potential representation, Hankel trans-
forms, and Fourier decompositions, and determined the dynamic
response of the semi-infinite solid to an arbitrarily distributed bur-
ied source. Ditri �22� determined nonuniform stresses in an iso-
tropic half-space from measurements of the dispersion of surface
waves. Dieterman and Metrikine �23� studied critical velocities of
a harmonic load moving uniformly along an elastic layer. These
studies are confined to elastic multilayered media only. Recently,
Zhao and Gary �24� presented an original analytical solution of
the longitudinal wave propagation in an infinite linear viscoelastic
cylindrical bar and its applications to experimental methods of
material behavior testing. Benatar et al. �25� conducted theoretical
and experimental analysis of longitudinal wave propagation in
cylindrical viscoelastic rods. Christensen �26� also studied discus-
sions of some problems concerning loads moving on viscoelastic
half-spaces.

Finite element method �FEM� has also been used in the dy-
namic analysis of layered medium to moving loads �20�. Chatti et
al. �27� considered a multilayered elastic medium subjected to
dynamic loads for applications in pavement design using finite
element analysis. The cumbersome of FEM in this kind of appli-
cation is twofold. Because the load is moving, one has to remesh
the finite element, which is a time consuming process. In addition,
no matter how large the medium of investigation is set up in FEM,
the moving load will always reach the artificial boundary, causing
significant reduction in computational accuracy. Noticing these
two shortcomings, Adam et al. �28� adopted both FEM and bound-
ary element method �BEM� for a two-dimensional moving load
problem. Sun �2� proposed another alternative for overcoming ex-
isting shortcomings of FEM by incorporating nonuniform mess
FEM with Sun’s convolution representation. More recently, Koh
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et al. �29� suggested a moving element method for dealing with a
two-dimensional moving load problem. A review on numerical
methods, primarily, the FEM and BEM, is given by Andersen et
al. �30�.

The benefit of using FEM is that it can deal with complex
geometry and constitutive models of the material. However, for
wave propagation in an infinite medium caused by moving loads,
the advantages of analytical or semi-analytical methods over FEM
are obvious. Analytical and/or semi-analytical methods provide a
more explicit representation and physical interpretation of the sub-
ject. When extended to more complicated loading scenarios, such
as stochastic moving loading with random material properties,
�stochastic� FEM is less functional as compared with analytical
methods �2�. Furthermore, computational efficiency of analytical
and/or semi-analytical methods is much higher than FEM.

In this paper we developed an analytical treatment for studying
steady-state responses of a multilayered viscoelastic medium to a
moving distributed load. Contributions of this paper are fourfold.
First, it proposes a novel approach that combines transfer matrix
method with Sun’s convolution representation to allow moving
load problem to be investigated analytically and computed effi-
ciently. Second, it extends a layered elastic medium to a layered
viscoelastic medium with material properties specified by four
different viscoelastic models. The consideration of viscosity is
crucial for characterization of asphalt concrete pavements and
may account for permanent deformation of pavement such as rut-
ting and roughness. Third, in existing studies of moving load
problem using analytical methods, the moving load is often as-
sumed to be a point load. In this paper the moving load has a
circular spatial distribution, which is more realistic for mimicking
tire footprint. Lastly, efficient numerical algorithms based on fast
evaluation of various integral transformations and their inversions
are developed, presented, and validated in a computational ex-
ample.

The remainder of this paper is organized as follows. Section 2
briefly introduces Sun’s convolution representation for moving
source problem in linear systems. Section 3 presents the govern-
ing Navier’s equation of multilayered viscoelastic media. Section
4 utilizes Fourier transform, Hankel transform, and Laplace trans-
form along with transfer matrix method to solve for impulse re-
sponse function �IRF� of the multilayered elastic and viscoelastic
media. In the derivation of viscoelastic IRF, the elastic-
viscoelastic correspondence principle is utilized. The obtained
IRFs are explicit solutions of Navier’s equation with impulse dis-
tributed loading as boundary conditions, which allow efficient nu-
merical algorithms to be carried out. Section 5 incorporates the
IRF with Sun’s convolution representation to obtain dynamic re-
sponse of the medium to a variety of moving loads. Section 6
validates the dynamic response of a four-layer elastic medium
against known results in the literature, followed by numerical re-
sults for steady-state response of a four-layer viscoelastic medium.
Section 7 makes concluding remarks.

2 Convolution Representation
The problem under consideration in this paper is the following.

In a Cartesian coordinate system x= �x ,y ,z�, a multilayered linear
viscoelastic medium is subjected to a distributed dynamic load,
F�x , t�, moving on the surface layer of the medium

F�x,t� =
H�r0

2 − �x − �t�2 − y2�
�r0

2 ��z�p�t� �1�

where p�·� describes varying amplitudes of the dynamic load, r0
and � are the radius and the velocity of the moving distributed
load, and t is the time variable. In addition, H�·� represents the
Heaviside unit step function and ��·� represents the Dirac delta
function. These are defined, respectively, by

H�t − t0� = �0 if t � t0
1
2 if t = t0

1 if t � t0
� �2�

and

�
−�

�

f�x���x − x0�dx = f�x0� and �
−�

�

��x − x0�dx = 1 �3�

Here, we are particularly interested in studying dynamic re-
sponse of this medium caused by such a moving load. A typical
method for dealing with a steady-state moving load problem is to
apply the Galilean transforms x�=x−�t, y�=y, and z�=z, such that
the problem can be reformulated in the transformed moving coor-
dinate system x�= �x� ,y� ,z��. This method can be ineffective for
transient moving load problem or less efficient for steady-state
problem as it involves tedious derivations of the formulas. Since
the multilayered viscoelastic medium is a linear system, a more
effective method is to formulate the steady-state moving load
problem using Sun’s convolution representation �2,3�

u�x,t� =�
0

�

p�t − ��h�x − �t + ��,y,z,��d� �4�

where � is an argument variable, u�x , t� represents the displace-
ment field of the medium, and h�x , t� is a kernel function or an
IRF of the medium, which corresponds to the displacement field
of the medium subject to a position-fixed impulse load expressed
by

F��x,t� =
H�r0

2 − x2 − y2�
�r0

2 ��z���t� �5�

The derivation of Sun’s convolution representation �4� is based
on the superposition principle of a linear system or the Betti–
Rayleigh reciprocal theorem in elastodynamics �3,31–36�, which
is also applicable to buried moving loads. The IRF plays a similar
role as the Green’s function, except that the former takes the spa-
tial distribution of the load into consideration, while the latter only
corresponds to a point impulse load. Advantages of formulating
the solution of a moving load problem in terms of Eq. �4� are
twofold. First it provides a concise, unified, physical interpretation
and decomposition of the dynamics of the medium. Second the
dynamic response of the medium subject to a moving load is
constructed from the dynamic response of the medium subject to a
position-fixed impulse load with axisymmetric spatial distribution
as given in Eq. �5�, allowing the adoption and utilization of a
cylindrical coordinate system �r ,� ,Z�. This further simplifies the
derivation of the solution by reducing the dimension of the prob-
lem under consideration from four variables �x ,y ,z , t� to three
variables �r ,z , t� because the medium is isotropic and variable �
plays no role in the governing equation for an axisymmetric prob-
lem. Therefore, displacement field u�x , t� on the left-hand-side of
Eq. �4� depends on the kernel function or the IRF of the medium,
h�·�, which is addressed in Secs. 3–6.

3 Governing Equations
Figure 1 shows a multilayered medium under a moving circular

load. For an axisymmetrically distributed impulse load �5�, it is
convenient to represent the governing equation in a global cylin-
drical coordinate system �r ,� ,Z�. In addition to the global cylin-
drical coordinate system �r ,� ,Z�, local cylindrical coordinate sys-
tems �ri ,�i ,zi� are also employed for the ith layer. The relationship
between global and local coordinate systems is defined by ri=r,
�i=�, and zi=Z−hi, in which hi is the vertical distance from the
surface of the multilayered medium to the upper interface of the
ith layer. Unless otherwise stated, the subscript i is omitted in the
following derivation for the sake of simplicity.
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Motions of a multilayered medium for the ith layer are gov-
erned by two wave equations in a cylindrical coordinate system
�31–36�

�cd
2 − cs

2�
��

�r
+ cs

2��2u −
u

r2	 − ü = 0 �6a�

�cd
2 − cs

2�
��

�z
+ cs

2�2w − ẅ = 0 �6b�

where u=u�r ,z , t� and w=w�r ,z , t� are displacements of the ith
layer along the radial direction r and depth direction z, respec-
tively, and dots in Eqs. �6a� and �6b� stand for differentiation with
respect to time t �one and two dots stand for first and second
derivatives, respectively�. Also, cd=
�	+2
� /� and cs=

 /� are
dilatational and shear wave velocities, respectively. Here 	 and 

are two Lame’s constants and can be expressed using Young’s
elastic modulus E and Poisson’s ratio �.

	 =
E�

�1 + ���1 − 2��
�7a�


 =
E

2�1 + ��
�7b�

For linear elastic solids, constitutive equations read


rz = 
� �u

�z
+

�w

�r
	 �8a�

�z = 	� + 2

�w

�z
�8b�

where �= ��u /�r�+ �u /r�+ ��w /�z�. Realistically, boundary condi-
tions of a multilayer medium as well as a single ith layer should
be established at the upper and lower boundaries. For the time
being, it is assumed that four boundary conditions are all estab-
lished at z=0 in a local coordinate �the purpose is to simplify the
assembly process for multiple layers�

�rz�r,z,t� = �rz�r,z,t��z=0 �r,z� � S� �9a�

�z�r,z,t� = �z�r,z,t��z=0 �r,z� � S� �9b�

u�r,z,t� = u�r,z,t��z=0 �r,z� � su �9c�

w�r,z,t� = w�r,z,t��z=0 �r,z� � su �9d�

Here, s� and su stand for domains where stress and displacement
fields are defined. For the steady-state problem under investiga-
tion, it is also assumed that the medium be at rest at t=−� and no
initial stress exists in the medium. That is,

u�r,z,− �� = u̇�r,z,− �� = w�r,z,− �� = ẇ�r,z,− �� = 0 �10�
For linear viscoelastic media studied in this paper, their prop-

erties can be characterized by mechanical models consisting of
springs and dashpots. Figure 2 shows four types of viscoelastic
models commonly used for characterizing viscosity in highway
pavements: Kelvin model, Maxwell model, Burgers model, and
the generalized viscoelastic model �1�. The generalized viscoelas-
tic model contains three other models as special cases. In Fig. 2, �
is the stress, E0 ,E1 , . . . ,En are Young’s elastic moduli correspond-
ing to spring constants, and T0 ,T1 , . . . ,Tn are retardation times
corresponding to dashpot dampings 	0 ,	1 , . . . ,	n via the relation-
ship Tj =	 j /Ej. A specific viscoelastic model defines an equivalent
modulus Ee through stress-strain relationship Ee=� /�.

A Kelvin model is a combination of spring and dashpot in par-
allel, as depicted in Fig. 2�a�. Both the spring and the dashpot
experience the same strain �, but the total stress is the sum of the
two stresses

� = E1� + 	1
��

�t
= E1�� + T1

��

�t
	 �11�

where retardation time T1=	1 /E1 and differential operator D
=� /�t. Equation �11� can be expressed as

� = Ee� �12�

where equivalent modulus Ee=E1+	1D=E1�1+T1D�.

Fig. 1 A multilayered medium resting on bedrock

Fig. 2 A schematic plot of four viscoelastic models
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A Maxwell model is a combination of spring and dashpot in
series, as indicated in Fig. 2�b�. Both the spring and the dashpot
experience the same stress, but the total strain is the sum of two
strains

� =
�

E0
+

�

	0
�

�t

=
�

E0
+

�

	0D
=

�

E0
+

�

T0E0D
�13�

where retardation time T0=	0 /E0. The equivalent elastic modulus
derived from Eq. �13� is

Ee =
�

�
=

E0T0D

T0D + 1
�14�

A Burgers model is a combination of Maxwell and Kelvin mod-
els in series, as indicated in Fig. 2�c�. The total strain is composed
of three parts:

� =
�

E0
+

�

E1 + 	1
�

�t

+
�

	0
�

�t

= ��T0D + 1

E0T0D
+

1

E1�T1D + 1�	
�15�

The equivalent elastic modulus derived from Eq. �15� is

Ee =
�

�
= �T0D + 1

E0T0D
+

1

E1�T1D + 1�
−1

�16�

Figure 2�d� shows a generalized model that can be used to
characterize a wide variety of viscoelastic material. It is a combi-
nation of Maxwell and n Kelvin models in series. The total strain
is composed of �n+1� parts:

� = �
T0D + 1

E0T0D
+ ��

i=1

n
1

Ei�TiD + 1�
�17�

The equivalent elastic modulus derived from Eq. �17� is

Ee =
�

�
= �T0D + 1

E0T0D
+ �

i=1

n
1

Ei�TiD + 1�
−1

�18�

4 Impulse Response Functions

4.1 A Single Layer of the Elastic Medium. The solution of
elastic media is the basis for that of viscoelastic medium. There-
fore, the former is sought first in this subsection, and followed by
the latter in Sec. 4.2. Wave equations �6a� and �6b� are linear
partial differential equations, for which integral transformation is
an effective method. Since we are interested in the steady-state
response of a multilayered medium, we apply Fourier transform
with respect to time t and Hankel transform with respect to radius
r. Unless otherwise stated, the treatment in this section is with
respect to the ith layer only.

We define Fourier transform and its inversion as

f̂�q� =�
−�

�

f�t�e−iqtdt �19a�

f�t� =�
−�

�

f̂�q�eiqtdq �19b�

Applying Fourier transform with respect to time t in Eqs. �6a�,
�6b�, �8a�, and �8b� leads to

�cd
2 − cs

2�
��̂

�r
+ cs

2��2û −
û

r2	 + q2û = 0 �20a�

�cd
2 − cs

2�
��̂

�z
+ cs

2�2ŵ + q2ŵ = 0 �20b�


̂rz = 
� � û

�z
+

�ŵ

�r
	 �21a�

�̂z = 	�̂ + 2

�ŵ

�z
�21b�


̂rz�r,z,q� = 
̂rz�r,zb,q� �r,z� � s� �22a�

�̂z�r,z,q� = �̂z�r,zb,q� �r,z� � s� �22b�

û�r,z,q� = û�r,zb,q� �r,z� � su �22c�

ŵ�r,z,q� = ŵ�r,zb,q� �r,z� � su �22d�

Define the �th order Hankel transform of f�r� and its inversion
as follows:

f̄��� =�
0

�

rf�r�J���r�dr �23a�

f�r� =�
0

�

� f̄���J���r�d� �23b�

where J� is the Bessel function of the first kind of order �, and �
is the radial wave-number corresponding to depth z. Denote
ū̂�� ,z ,q�, w̄̂�� ,z ,q�, 
̄̂rz�� ,z ,q�, and �̄̂z�� ,z ,q� the displacement
and stress fields after the Fourier and Hankel transforms.

ū̂��,z,q� =�
0

�

rû�r,z,q�J1��r�dr �24a�

w̄̂��,z,q� =�
0

�

rŵ�r,z,q�J0��r�dr �24b�

�̂rz��,z,q� =�
0

�

r�̂rz�r,z,q�J1��r�dr �24c�

�̂z��,z,q� =�
0

�

r�̂z�r,z,q�J0��r�dr �24d�

where the caret variables in Eqs. �24a�–�24d� have been defined in
Eqs. �22a�–�22d�.

Apply Hankel transform of order 1 with respect to radius r in
Eqs. �20a�, �21a�, �22a�, and �22c�. Apply Hankel transform of
order 0 with respect to radius r in Eqs. �20b�, �21b�, �22b�, and
�22d�. After these transformations, we have

cs
2d2ū̂

dz2 − �cd
2 − cs

2��
dw̄̂

dz
+ �q2 − cd

2�2�ū̂ = 0 �25a�

cd
2d2w̄̂

dz2 + �cd
2 − cs

2��
dū̂

dz
+ �q2 − cs

2�2�w̄̂ = 0 �25b�


̄̂rz = 
�dū̂

dz
− �w̄̂	 �26a�

�̄̂z = 	�ū̂ + �	 + 2
�
dw̄̂

dz
�26b�

with boundary conditions
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̄̂rz��,z,q� = 
̄̂rz��,zb,q� ��,z� � S� �27a�

�̄̂z��,z,q� = �̄̂z��,zb,q� ��,z� � S� �27b�

ū̂��,z,q� = ū̂��,zb,q� ��,z� � Su �27c�

w̄̂��,z,q� = w̄̂��,zb,q� ��,z� � Su �27d�

It should be noted that Eqs. �25a� and �25b� are now a set of linear
ordinary differential equations �ODEs� with only one independent
variable z, for which analytical solution is available.

Multiplying Eq. �25a� by �cd
2−cs

2�� leads to

cs
2�cd

2 − cs
2��

d2ū̂

dz2 − �cd
2 − cs

2�2�2dw̄̂

dz
+ �cd

2 − cs
2���q2 − cd

2�2�ū̂ = 0

�28�

Differentiating Eq. �25b� with respect to z gives

cd
2d3w̄̂

dz3 + �cd
2 − cs

2��
d2ū̂

dz2 + �q2 − cs
2�2�

dw̄̂

dz
= 0 �29�

Multiplying Eq. �29� by cs
2 leads to

cs
2cd

2d3w̄̂

dz3 + cs
2�cd

2 − cs
2��

d2ū̂

dz2 + cs
2�q2 − cs

2�2�
dw̄̂

dz
= 0 �30�

Equation �30� minus Eq. �28� leads to

�cd
2 − cs

2���q2 − cd
2�2�ū̂ = cs

2cd
2d3w̄̂

dz3 + �cs
2�q2 − cs

2�2� + �cd
2 − cs

2�2�2�
dw̄̂

dz

�31�

Differentiating Eq. �31� with respect to z leads to

�cd
2 − cs

2���q2 − cd
2�2�

dū̂

dz
= cs

2cd
2d4w̄̂

dz4 + �cs
2�q2 − cs

2�2�

+ �cd
2 − cs

2�2�2�
d2w̄̂

dz2 �32�

Multiplying Eq. �25b� by �q2−cd
2�2� leads to

cd
2�q2 − cd

2�2�
d2w̄̂

dz2 + �cd
2 − cs

2���q2 − cd
2�2�

dū̂

dz

+ �q2 − cs
2�2��q2 − cd

2�2�w̄̂ = 0 �33�

Substituting Eq. �32� into Eq. �33� and performing some algebraic
manipulation leads to

d4w̄̂

dz4 + ��q2

cs
2 − �2	 + �q2

cd
2 − �2	
d2w̄̂

dz2 + �q2

cs
2 − �2	�q2

cd
2 − �2	w̄̂ = 0

�34�

Denoting A=�2− �q2 /cs
2� and B=�2− �q2 /cd

2� leads to

d4w̄̂

dz4 + �A + B�
d2w̄̂

dz2 + ABw̄̂ = 0 �35�

The auxiliary equation of Eq. �35� is

r4 − �A + B�r2 + AB = 0 or equivalently �r2 − A��r2 − B� = 0

�36�

Suppose that four roots of Eq. �36� are r1, r2, r3, and r4. According
to the general solution of linear ODE, the solution of Eq. �35� can
be expressed as

w̄̂ = c1er1z + c2er2z + c3er3z + c4er4z �37�

where c1, c2, c3, and c4 are some unknown functions of cs, cd, �,
and q and are to be determined from boundary conditions. Since
cd�cs, it follows that A�B and therefore three scenarios exist for
these four roots of Eq. �36�, which are listed in Table 1.

Using Euler formula ei�=cos �+ i sin �, the solution of Eq.
�34� for scenario 0�B�A can also be written as

w̄̂ = C1 cos�
− Az� + C2 sin�
− Az� + C3 cos�
− Bz�

+ C4 sin�
− Bz� �38a�

where C1=c1+c2, C2= �c1−c2�i, C3=c3+c4, and C4= �c3−c4�i.
The solution of Eq. �34� for scenario 0�B�A can also be written
as

w̄̂ = C1 cos�
− Az� + C2 sin�
− Az� + C3 cos�i
Bz� + C4 sin�i
Bz�
�38b�

where C1=c1+c2, C2= �c1−c2�i, C3=c3+c4, and C4= �c4−c3�i.
Similarly, the solution of Eq. �34� for scenario B�A�0 can also
be written as

w̄̂ = C1 cos�i
Az� + C2 sin�i
Az� + C3 cos�i
Bz� + C4 sin�i
Bz�
�38c�

where C1=c1+c2, C2= �c2−c1�i, C3=c3+c4, and C4= �c4−c3�i.
Define �=
�q2 /cs

2�−�2 and �=
�q2 /cd
2�−�2. Clearly, if A�0

then �=
−A, and if A�0 then �= i
A; if B�0 then �=
−B, and
if B�0 then �= i
B. Given this notation Eqs. �38a�–�38c� can be
written in the same concise form as

w̄̂ = C1 cos��z� + C2 sin��z� + C3 cos��z� + C4 sin��z� �39�

It should be noted that C1, C2, C3, C4, �, and � in Eq. �39� are
defined in complex number domain. In the following, we are go-
ing to determine C1, C2, C3, and C4 from boundary conditions.

Differentiating Eq. �39� with respect to z leads to

dw̄̂

dz
= − C1� sin��z� + C2� cos��z� − C3� sin��z� + C4� cos��z�

�40�

Differentiating Eq. �40� with respect to z leads to

d2w̄̂

dz2 = − C1�2 cos��z� − C2�2 sin��z� − C3�2 cos��z�

− C4�2 sin��z� �41�

Differentiating Eq. �41� with respect to z leads to

d3w̄̂

dz3 = C1�3 sin��z� − C2�3 cos��z� + C3�3 sin��z�

− C4�3 cos��z� �42�

Substituting Eqs. �40� and �42� into Eq. �31� leads to

Table 1 Four scenarios of four roots of auxiliary Eq. „36…

Scenarios r1,2 r3,4 Solution of Eq. �34�

0�B�A �i
−A �i
−B w̄̂=c1ei
−Az+c2e−i
−Az+c3ei
−Bz+c4e−i
−Bz

B�0�A �i
−A �
B w̄̂=c1ei
−Az+c2e−i
−Az+c3e
Bz+c4e−
Bz

B�A�0 �
A �
B w̄̂=c1e
Az+c2e−
Az+c3e
Bz+c4e−
Bz
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ū̂ =
cs

2cd
2�C1�3 sin��z� − C2�3 cos��z� + C3�3 sin��z� − C4�3 cos��z��

�cd
2 − cs

2���q2 − cd
2�2�

+
�cs

2�q2 − cs
2�2� + �cd

2 − cs
2�2�2��− C1� sin��z� + C2� cos��z� − C3� sin��z� + C4� cos��z��

�cd
2 − cs

2���q2 − cd
2�2�

=
cs

2cd
2�2 − cs

2�q2 − cs
2�2� − �cd

2 − cs
2�2�2

�cd
2 − cs

2���q2 − cd
2�2�

C1� sin��z� +
− cs

2cd
2�2 + cs

2�q2 − cs
2�2� + �cd

2 − cs
2�2�2

�cd
2 − cs

2���q2 − cd
2�2�

C2� cos��z�

+
cs

2cd
2�2 − cs

2�q2 − cs
2�2� − �cd

2 − cs
2�2�2

�cd
2 − cs

2���q2 − cd
2�2�

C3� sin��z� +
− cs

2cd
2�2 + cs

2�q2 − cs
2�2� + �cd

2 − cs
2�2�2

�cd
2 − cs

2���q2 − cd
2�2�

C4� cos��z� =
C1�

�
sin��z� −

C2�

�
cos��z�

−
cd

2�C3�

q2 − cd
2�2sin��z� +

cd
2�C4�

q2 − cd
2�2cos��z� =

C1�

�
sin��z� −

C2�

�
cos��z� −

�C3�

�2 sin��z� +
�C4�

�2 cos��z� =
C1�

�
sin��z� −

C2�

�
cos��z�

−
�C3

�
sin��z� +

�C4

�
cos��z� �43�

Differentiating Eq. �43� with respect to z leads to

dū̂

dz
=

C1�2

�
cos��z� +

C2�2

�
sin��z� − �C3 cos��z� − �C4 sin��z�

�44�

Substituting Eqs. �44� and �39� into Eq. �26a� leads to


̄̂rz = 
��C1�2

�
cos��z� +

C2�2

�
sin��z� − �C3 cos��z�

− �C4 sin��z�	 − ��C1 cos��z� + C2 sin��z� + C3 cos��z�

+ C4 sin��z��
 =
�2 − �2

�

C1 cos��z� +

�2 − �2

�

C2 sin��z�

− 2�
C3 cos���z� − 2�
C4 sin���z� �45�

Substituting Eqs. �43� and �40� into Eq. �26b� leads to

�̄̂z = 	��C1�

�
sin��z� −

C2�

�
cos��z� −

�C3

�
sin��z� +

�C4

�
cos��z�	

+ �	 + 2
��− C1� sin��z� + C2� cos��z� − C3� sin��z�

+ C4� cos��z�� = − 2
C1� sin��z� + 2
C2� cos��z�

−

��2 − �2�

�
C3 sin��z� +


��2 − �2�
�

C4 cos��z� �46�

So far the general solutions of Eqs. �25a�, �25b�, �26a�, and �26b�
have been given by Eqs. �43�, �39�, �45�, and �46�, respectively.
Consider a single layer �i.e., the ith layer� of the multilayered
medium. In a local coordinate system the upper boundary of the
ith layer along the z direction is defined at z=0. Suppose
that boundary conditions at z=0 are given in the Fourier–Hankel
transformed domain as ū̂�� ,z ,q� �z=0= ū̂zo, w̄̂�� ,z ,q� �z=0= w̄̂zo,
�̂�� ,z ,q� �z=0=�̂zo, and �̂rz�� ,z ,q� �z=0= �̂zo. Applying the solution
of Eqs. �43�, �39�, �45�, and �46� at z=0 and taking into account
boundary conditions �27a�–�27d� lead to

ū̂zo = −
C2�

�
+

�C4

�
�47�

w̄̂zo = C1 + C3 �48�


̄̂zo =
�2 − �2

�

C1 − 2�
C3 �49�

�̄̂zo = 2
C2� +

��2 − �2�

�
C4 �50�

Solving algebraic equations �47�–�50� gives

C1 =
2�2

�2 + �2 w̄̂zo +
�


��2 + �2�

̄̂zo �51�

C2 = −
���2 − �2�
���2 + �2�

ū̂zo +
�2


���2 + �2�
�̄̂zo �52�

C3 =
�2 − �2

�2 + �2 w̄̂zo −
�


��2 + �2�

̄̂zo �53�

C4 =
2�

�2 + �2 ū̂zo +
�


��2 + �2�
�̄̂zo �54�

Denoting �=
q2 /cs
2 leads to �2+�2= �q2 /cs

2�−�2+�2=�2. It fol-
lows that

C1 =
2�2

�2 w̄̂zo +
�


�2 
̄̂zo �55�

C2 = −
���2 − �2�

��2 ū̂zo +
�2


��2 �̄̂zo �56�

C3 =
�2 − �2

�2 w̄̂zo −
�


�2 
̄̂zo �57�

C4 =
2��

�2 ū̂zo +
�


�2 �̄̂zo �58�

Substituting Eqs. �55�–�58� into Eqs. �43�, �39�, �45�, and �46�
leads to

ū̂ =
�2�2

�2 w̄̂zo +
�


�2 
̄̂zo	�

�
sin��z�

−
�−

���2 − �2�
��2 ū̂zo +

�2


��2 �̄̂zo	�

�
cos��z�

−

���2 − �2

�2 w̄̂zo −
�


�2 
̄̂zo	
�

sin��z�
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+

��2��

�2 ū̂zo +
�


�2 �̄̂zo	
�

cos��z� �59a�

w̄̂ = �2�2

�2 w̄̂zo +
�


�2 
̄̂zo	cos��z� + �−
���2 − �2�

��2 ū̂zo

+
�2


��2 �̄̂zo	sin��z� + ��2 − �2

�2 w̄̂zo −
�


�2 
̄̂zo	cos��z�

+ �2��

�2 ū̂zo +
�


�2 �̄̂zo	sin��z� �59b�


̄̃rz =
�2 − �2

�

�2�2

�2 w̄̂zo +
�


�2 
̄̂zo	cos��z�

+
�2 − �2

�

�−

���2 − �2�
��2 ū̂zo +

�2


��2 �̄̂zo	sin��z�

− 2�
��2 − �2

�2 w̄̂zo −
�


�2 
̄̂zo	cos��z�

− 2�
�2��

�2 ū̂zo +
�


�2 �̄̂zo	sin��z� �59c�

�̄̂z = − 2
�2�2

�2 w̄̂zo +
�


�2 
̄̂zo	� sin��z� + 2
�−
���2 − �2�

��2 ū̂zo

+
�2


��2 �̄̂zo	� cos��z� −

��2 − �2�

�
��2 − �2

�2 w̄̂zo

−
�


�2 
̄̂zo	sin��z� +

��2 − �2�

�
�2��

�2 ū̂zo +
�


�2 �̄̂zo	cos��z�

�59d�

Simplifying the above four expressions results in

ū̂ = ��2 − �2

�2 cos��z� +
2�2

�2 cos��z�
ū̂zo + �2��

�2 sin��z�

−
���2 − �2�

��2 sin��z�
w̄̂zo + � �


�2sin��z� +
�2


��2sin��z�
 
̄̂zo

+ �−
�


�2cos��z� +
�


�2cos��z�
�̄̂zo �60a�

w̄̂ = �2��

�2 sin��z� −
���2 − �2�

��2 sin��z�
ū̂zo + ��2 − �2

�2 cos��z�

+
2�2

�2 cos��z�
w̄̂zo +
1



�−

�

�2cos��z� +
�

�2cos��z�
 
̄̂zo

+
1



� �

�2sin��z� +
�2

��2sin��z�
�̄̂zo �60b�


̄̂rz = 
�−
��2 − �2�2

��2 sin��z� −
4�2�

�2 sin��z�
ū̂zo

+ 

2���2 − �2�

�2 �cos��z� − cos��z��w̄̂zo + ��2 − �2

�2 cos��z�

+
2�2

�2 cos��z�
 
̄̂zo + � ���2 − �2�
��2 sin��z� −

2��

�2 sin��z�
�̄̂zo

�60c�

�̄̂z = 

2���2 − �2�

�2 �cos��z� − cos��z��ū̂zo + 
�−
��2 − �2�2

��2 sin��z�

−
4�2�

�2 sin��z�
w̄̂zo + � ���2 − �2�
��2 sin��z� −

2��

�2 sin��z�
 
̄̂zo

+ ��2 − �2

�2 cos��z� +
2�2

�2 cos��z�
�̄̂zo �60d�

The above results can be written more concisely as

ū̂��,z,q� = �11ū̂zo + �12w̄̂zo + �13
̄̂zo + �14�̄̂zo �61a�

w̄̂��,z,q� = �21ū̂zo + �22w̄̂zo + �23
̄̂zo + �24�̄̂zo �61b�


̄̂rz��,z,q� = �31ū̂zo + �32w̄̂zo + �33
̄̂zo + �34�̄̂zo �61c�

�̄̂rz��,z,q� = �41ū̂zo + �42w̄̂zo + �43
̄̂zo + �44�̄̂zo �61d�

or equivalently, for the ith layer

�
ū̂��,z,q�

w̄̂��,z,q�

�̂rz��,z,q�

�̂z��,z,q�
� = ���z���

ū̂��,z,q��z=0

w̄̂��,z,q��z=0

�̂rz��,z,q��z=0

�̂z��,z,q��z=0

� and ���z��

= ����,z,q�� = �
�11�12�13�14

�21�22�23�24

�31�32�33�34

�41�42�43�44

� �62�

where

�11 =
�2 − �2

�2 cos��z� +
2�2

�2 cos��z� �63a�

�12 =
2��

�2 sin��z� −
���2 − �2�

��2 sin��z� �63b�

�13 =
1



� �

�2sin��z� +
�2

��2sin��z�
 �63c�

�14 =
1



�−

�

�2cos��z� +
�

�2cos��z�
 �63d�

�21 =
2��

�2 sin��z� −
���2 − �2�

��2 sin��z� �64a�

�22 =
�2 − �2

�2 cos��z� +
2�2

�2 cos��z� �64b�

�23 =
1



�−

�

�2cos��z� +
�

�2cos��z�
 �64c�

�24 =
1



� �

�2sin��z� +
�2

��2sin��z�
 �64d�

�31 = 
�−
��2 − �2�2

��2 sin��z� −
4�2�

�2 sin��z�
 �65a�

�32 = 

2���2 − �2�

�2 �cos��z� − cos��z�� �65b�

�33 =
�2 − �2

�2 cos��z� +
2�2

�2 cos��z� �65c�
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�34 =
���2 − �2�

��2 sin��z� −
2��

�2 sin��z� �65d�

�41 = 

2���2 − �2�

�2 �cos��z� − cos��z�� �66a�

�42 = 
�−
��2 − �2�2

��2 sin��z� −
4�2�

�2 sin��z�
 �66b�

�43 =
���2 − �2�

��2 sin��z� −
2��

�2 sin��z� �66c�

�44 =
�2 − �2

�2 cos��z� +
2�2

�2 cos��z� �66d�

4.2 Assembly of Responses of Multiple Layers. Since we
omitted the subscript i in the foregoing derivations, variable z in
Eq. �62� should indeed be zi. Note that the relationship between a
local coordinate system �ri ,zi ,�i� of the ith layer and a global
coordinate system �r ,Z ,�� of the entire multilayered solid is given
by Z=zi+hi. As a result, Eq. �62� can be written in the global
coordinate system as

�
ū̂��,z,q�

w̄̂��,z,q�

�̂rz��,z,q�

�̂z��,z,q�
� = ����,Z − hi,q���

ū̂��,Z,q��Z=hi

w̄̂��,Z,q��Z=hi

�̂rz��,Z,q��Z=hi

�̂z��,Z,q��Z=hi

� �67�

The assembly of response of multilayers is implemented
through the boundary conditions at interfaces between an upper
layer and a lower layer. In this study continuity condition is as-
sumed for response at the interface. That is, stresses and displace-
ments at the bottom of the upper layer, respectively, equal to
stresses and displacements at the bottom of the lower layer. Start
from the Nth layer �bottom layer in Fig. 1�. Following Eq. �62�
stress and displacement fields at any location in the Nth layer can
be expressed in terms of stress and displacement boundary condi-
tions at the upper boundary of the Nth layer or equivalently the
lower boundary of the �N−1�th layer. Now, consider the �N
−1�th layer. Stress and displacement fields at any location in the
�N−1�th layer �including the lower boundary of the �N−1�th
layer� can be expressed in terms of stress and displacement
boundary conditions at the upper boundary of the �N−1�th layer
or equivalently the lower boundary of the �N−2�th layer. In this
way, stress and displacement fields at any location in the Nth and
the �N−1�th layers can be expressed as functions of the upper
boundary conditions of the �N−1�th layer. If one keeps assem-
bling multiple layers, eventually, stress and displacement fields at
any location in the multilayered medium can be expressed as
functions of the upper boundary conditions of the first layer �i.e.,
top layer�.

Indeed, two displacement fields u�r ,z1 , t� �z1=0 and
w�r ,z1 , t� �z1=0 at the upper boundary of a multilayered medium
under a vertical load are unknown and thus cannot be used as
boundary conditions. For the multilayered medium resting on bed-
rock as shown in Fig. 1, two stress boundary conditions are given
at z1=0 and two displacement boundary conditions are at the bot-
tom zN=�hN as follows:

�rz�r,z1,t� = �rz�r,z1,t��z1=0 = 0 �r,z� � S� �68a�

�z�r,z1,t� = �z�r,z1,t��z1=0 �r,z� � S� �68b�

u�r,zN,t� = u�r,zN,t��zN=�hN
= 0 �r,z� � su �68c�

w�r,zN,t� = w�r,zN,t��zN=�hN
= 0 �r,z� � su �68d�

According to the above-described assembly rule, u�r ,zN , t� �zN=�hN
and w�r ,zN , t� �zN=�hN

can be written as functions of u�r ,z1 , t� �z1=0,
w�r ,z1 , t� �z1=0, �rz�r ,z1 , t� �z1=0, and �z�r ,z1 , t� �z1=0. Therefore, the
two unknown upper boundary displacement conditions
u�r ,z1 , t� �z1=0 and w�r ,z1 , t� �z1=0 can be solved using two upper
boundary stress conditions �rz�r ,z1 , t� �z1=0 and �z�r ,z1 , t� �z1=0

as well as two lower boundary displacement conditions
u�r ,zN , t� �zN=�hN

and w�r ,zN , t� �zN=�hN
. It then follows that all

stress and displacement fields in the entire multilayered medium
can be solved.

To elaborate the above assembly process, define displacement

and stress fields as �Ū̂�Z��= �ū̂�� ,Z ,q� , w̄̂�� ,Z ,q�� and �T̄̂�Z��
= ��̂rz�� ,Z ,q� ,�̂z�� ,Z ,q��, respectively. Equation �67� can be
written as

�Ū̂�Z�, T̄̂�Z��T = ���Z − hi���Ū̂�hi�, T̄̂�hi��T �69�

where T stands for transpose. For the interface between the ith
layer and the �i−1�th layer, let Z=hi

+ be the upper boundary be-
longing to the �i−1�th layer, and let Z=hi

− be the lower boundary
belonging to the ith layer. At Z=hi+1

+ , Eq. �69� becomes

�Ū̂�hi+1
+ �, T̄̂�hi+1

+ ��T = ����hi���Ū̂�hi
−�, T̄̂�hi

−��T �70�

where �hi is the thickness of the ith layer, �hi=hi+1
+ −hi. When a

continuous interface condition is assumed, that is, �Ū̂�hi
−��

= �Ū̂�hi
+�� and �T̄̂�hi

−��= �T̄̂�hi
+��, Eq. �70� can be expanded as fol-

lows:

�Ū̂�hi+1
+ �, T̄̂�hi+1

+ ��T = ����hi���Ū̂�hi
−�, T̄̂�hi

−��T

= ����hi���Ū̂�hi
+�−, T̄̂�hi

+��T

= ����hi������hi−1������hi−2�� ¯ ����h2��

�����h1���Ū̂�h1�, T̄̂�h1��T �71�

So Eq. �69� becomes

�Ū̂�Z�, T̄̂�Z��T = ���Z − hi������hi−1�� ¯ ����h2������h1��

��Ū̂�h1�, T̄̂�h1��T �72�

where hi�Z�hi+1. Equation �72� means that, for each layer, the
transformed displacements and stresses at the bottom interface can
be expressed in terms of their counterparts at the upper interface.
The bedrock foundation underneath the Nth layer �the �N+1�th
layer� as indicated by lower boundary conditions in Eqs. �68c� and
�68d� can be written in a global coordinate system as
u�r ,Z , t�Z=hN+1

=0 and w�r ,Z , t�Z=hN+1
=0 or equivalently in the

transformed domain

�Ū̂�hN+1�� = �ū̂��,hN+1,q�, w̄̂��,hN+1,q�� = �0,0� �73�

As a result, displacement and stress fields in the Laplace–Hankel
domain can be ultimately represented in terms of stresses �in the
Laplace–Hankel domain� on the surface of the multilayered me-
dium and bedrock boundary conditions

�Ū̂�Z�, T̄̂�Z��T = ���Z��4�2�T̄̂�h1��2�1
T �74�

where

���Z�� = ���Z − hi������hi−1�� ¯ ����h2������h1����R1�
I



is a 4�2 matrix and �I�=� 1 0

0 1
� is a 2�2 unit matrix; for 1� i

�N, �Ri�=−K11
−1K12 is a 2�2 matrix and �RN+1�=� 0 0

0 0
�, in which
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�K� = �K11 K12

K21 K22

 = ����hN������hN−1�� ¯ ����hi+1������hi��

in which �K� is a 4�4 matrix, and �K11�, �K12�, �K21�, and

�K22� are 2�2 block matrices each; ����hi��=� �11
i �12

i

�21
i �22

i �,

where ��11
i �=� �11��hi� �12��hi�

�21��hi� �22��hi�
�, ��12

i �=� �13��hi� �14��hi�
�23��hi� �24��hi�

�, ��21
i �

=� �31��hi� �32��hi�
�41��hi� �42��hi�

�, and ��22
i �=� �33��hi� �34��hi�

�43��hi� �44��hi�
�.

Applying inverse Fourier transform and inverse Hankel trans-
form of order 1 to ū̂�� ,Z ,q� and 
̄̂rz�� ,Z ,q�, and inverse Fourier

transform and inverse Hankel transform of order 0 to w̄̂�� ,Z ,q�
and �̄̂z�� ,Z ,q�, Eq. �74� results in displacement and stress fields in
the space-time domain

�
u�r,Z,t�
w�r,Z,t�
�rz�r,Z,t�
�z�r,Z,t�

� =
1

2�
�

−�

� �
0

�

� diag�J��r�����Z���T̄̂�h1��Td�eiqtdq

�75�

where

���Z�� = �
�1��,Z,q�
�2��,Z,q�
�3��,Z,q�
�4��,Z,q�

� = �
�11��,Z,q� �12��,Z,q�
�21��,Z,q� �22��,Z,q�
�31��,Z,q� �32��,Z,q�
�41��,Z,q� �42��,Z,q�

�
in which ��1�� ,Z ,q�� and ��2�� ,Z ,q��, ��3�� ,Z ,q��, and
��4�� ,Z ,q�� are 1�2 matrices each, and �J��r��
=diag�J1��r� J0��r� J1��r� J0��r��. With these notations, Eq.
�75� can be written as

u�r,Z,t� =
1

2�
�

−�

� �
0

�

�J1��r���1��,Z,q��

��
̄̂rz�r,h1,t�, �̄̂z�r,h1,t��Td�eiqtdq �76a�

w�r,Z,t� =
1

2�
�

−�

� �
0

�

�J0��r���2��,Z,q��

��
̄̂rz�r,h1,t�, �̄̂z�r,h1,t��Td�eiqtdq �76b�


rz�r,Z,t� =
1

2�
�

−�

� �
0

�

�J1��r���3��,Z,q��

��
̄̂rz�r,h1,t�, �̄̂z�r,h1,t��Td�eiqtdq �76c�

�z�r,Z,t� =
1

2�
�

−�

� �
0

�

�J0��r���4��,Z,q��

��
̄̂rz�r,h1,t�, �̄̂z�r,h1,t��d�eiqtdq �76d�
In practice, measurement of surface velocity and acceleration

can be easier than that of surface displacement. Vertical velocity
u̇�r ,Z , t� and acceleration ü�r ,Z , t� of the surface of the multilay-
ered system can be given as first and second derivatives of dis-
placement with respect to time t,

u̇�r,Z,t� =
1

2�
�

−�

� �
0

�

�J1��r��iq���1��,Z,q��

��
̄̂rz�r,h1,t�, �̄̂z�r,h1,t��Td�eiqtdq �77a�

ü�r,Z,t� =
1

2�
�

−�

� �
0

�

�J1��r��− q2���1��,Z,q��

��
̄̂rz�r,h1,t�, �̄̂z�r,h1,t��Td�eiqtdq �77b�

The IRF, h�x , t�= �u�r ,Z , t�� ,w�r ,Z , t�� ,
rz�r ,Z , t�� ,�z�r ,
Z , t���T, of a multilayered elastic medium is the solution of Eqs.
�6a� and �10� given that the exerted dynamic load is expressed by
an impulsive load �Eq. �5��, which corresponds to the following
boundary condition:

�z�r,h1,t� = −
1

�r0
2��t�H�r0 − r� �78�

Here, h1 is the distance between the surface of the multilayered
medium and the upper interface of the surface layer. By definition,
h1=0. Clearly, the Fourier–Hankel transform of Eq. �78� can be
written as

�̄̂z��,h1,q��h1=0 = −
J1�r0��
�r0�

�79�

where J1�·� is the first order Bessel function of the first kind.
Because there exists only a normal stress on the surface, elastic
solutions �77a� and �77b� become

u�r,Z,t� =
1

2�
�

−�

� �
0

�

�J1��r��12��,Z,q��̄̂z�r,h1,t�d�eiqtdq

�80a�

w�r,Z,t� =
1

2�
�

−�

� �
0

�

�J0��r��22��,Z,q��̄̂z�r,h1,t�d�eiqtdq

�80b�


rz�r,Z,t� =
1

2�
�

−�

� �
0

�

�J1��r��32��,Z,q��̄̂z�r,h1,t�d�eiqtdq

�80c�

�z�r,Z,t� =
1

2�
�

−�

� �
0

�

�J0��r��42��,Z,q��̄̂z�r,h1,t�d�eiqtdq

�80d�

The IRF h�x , t� can thus be obtained by substituting Eq. �79� into
Eqs. �80a�–�80d�,

u�r,Z,t�� = −
1

2�2r0
�

−�

� �
0

�

J1��r�J1�r0���12��,Z,q�eiqtd�dq

�81a�

w�r,Z,t�� = −
1

2�2r0
�

−�

� �
0

�

J0��r�J1�r0���22��,Z,q�eiqtd�dq

�81b�


rz�r,Z,t�� = −
1

2�2r0
�

−�

� �
0

�

J1��r�J1�r0���32��,Z,q�eiqtd�dq

�81c�

�z�r,Z,t�� = −
1

2�2r0
�

−�

� �
0

�

J0��r�J1�r0���42��,Z,q�eiqtd�dq

�81d�
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4.3 Viscoelastic Media. To obtain the IRF of the multilayered
viscoelastic medium, one needs to apply the correspondence prin-
ciple of elastic-viscoelastic theory �26,37�. As Poisson ratio � has
a relatively small effect on dynamic responses of multilayered
media, it is assumed in this study that Poisson ratio � is a time-
independent constant. It follows that the Fourier transform of � is
� per se. According to the correspondence principle of elastic-
viscoelastic theory, the viscoelastic solution of a linear system can
be obtained following procedures in Fig. 3.

Equivalent modulus Ee for a specific viscoelastic model is de-
fined through stress-strain relationship Ee=� /�. For a viscoelastic
material, Ee is no longer a constant but a time-dependent function.
Because Young’s elastic modulus E and Poisson’s ratio � appear-
ing in the elastic solution are in terms of 	 and 
, 	 and 
 as
given by Eqs. �7a� and �7b� also become functions of time. Based
on the elastic-viscoelastic correspondence principle, taking Fou-

rier transform Êe of an equivalent elastic modulus Ee is equivalent
to taking Fourier transform of 	 and 
. In other words, to obtain
the IRF of the multilayered viscoelastic medium one needs to

update 	 and 
 in elastic solution �Eqs. �81b�–�81d�� by 	̂ and 
̂,
respectively,

	̂ =
Êe�

�1 + ���1 − 2��
�82a�


̂ =
Êe

2�1 + ��
�82b�

where 	̂ and 
̂ are Fourier transforms of 	 and 
, and Fourier

transform of Ee is denoted by Êe, often called complex modulus. It
is noted that in Eqs. �81b�–�81d� coefficients that involve 	 and 


are �ij �i , j=1, . . . ,4�, �̇ij �i=1, 2, and j=1, . . . ,4�, �2, �2, p2, cd,
and cs.

The remainder of this section dedicates to the elaboration of

complex modulus Êe corresponding to a specific viscoelastic

model. Complex modulus, Êe, of a Kelvin model is given by
Fourier transform of Ee given by Eq. �12�,

Êe = E1�1 + T1�i� �83�

where � is the frequency of sinusoidal vibratory load �=�0ei�t

and it corresponds to variable t in the time domain. Following Eq.

�14� complex modulus Êe of a Maxwell model is defined by

Êe =
E0T0�i

T0�i + 1
�84�

Complex modulus of a Burgers model Êe is defined in the Fourier
transform of Eq. �16�,

Êe = � E0T0�i

T0�i + 1
+

1

E1�1 + T1�i�
−1

�85�

The complex modulus, Êe, of the generalized model is defined in
the Fourier transform of Eq. �18�,

Êe = � E0T0�i

T0�i + 1
+ �

i=1

n
1

Ei�1 + Ti�i�
−1

�86�

5 Dynamic Response of the Media to Moving Loads
Dynamic response of the multilayered viscoelastic medium to a

moving distributed load with varying amplitudes expressed in Eq.
�1� can be constructed using Sun’s convolution representation by
incorporating IRF h�x , t�, as given in Eqs. �81b�–�81d� with Eq.
�4� to give

u�x,y,Z,t� = −
1

2�2r0
�

−�

� �
0

��
0

�

p�t − ��

�J1��
�x − �t + v��2 + y2�

�J1�r0���12��,Z,q�eiq�d�d�dq �87a�

w�x,y,Z,t� = −
1

2�2r0
�

−�

� �
0

��
0

�

p�t − ��

�J0��
�x − �t + v��2 + y2�

�J1�r0���22��,Z,q�eiq�d�d�dq �87b�


rz�x,y,Z,t� = −
1

2�2r0
�

−�

� �
0

��
0

�

p�t − ��

�J1��
�x − �t + v��2 + y2�
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where r=
�x−�t+���2+y2.
The exerted dynamic load is a moving distributed harmonic

load given by

Fh�x,t� =
H�r0

2 − �x − �t�2 − y2�
�r0

2 ��z��0ei�t �88�

Here, �0 is a constant stress. The dynamic response of the medium
can be obtained by replacing p�t−�� in Eqs. �87a�–�87d� using
�0ei��t−��,

u�x,y,Z,t� = −
�0ei�t

2�2r0
�

−�

� �
0

��
0

�

e−i��−q��
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�J0��
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Fig. 3 Procedures for applying the elastic-viscoelastic corre-
sponding principles
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Let x−�t+v�= �y�R; the above response field can be rewritten as

u�x,y,Z,t� = −
�0 exp�i�x/��
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A special case is when the moving harmonic load is a point
load. In this case, by taking limit r0→0 to Eqs. �89a�–�89d� one
obtains

u�x,y,Z,t� = −
�0ei�t
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In the derivation of Eqs. �91a�–�91d� the following limit is used:

lim
�→0

J1���
�

=
1

2
�92�

Another special case occurs when the moving distributed har-
monic load is stationary, which corresponds to �=0 and leads to

u�r,Z,t� = −
�0ei�t

�r0
�

0

�

J1��r�J1�r0���12��,Z,��d� �93a�

Fig. 4 A four-layer pavement used for numerical study
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In the derivation of Eqs. �93a�–�93d� the following equality and
the property of Dirac delta function �3� are used:

�
0

�

e−i��−q��d� = 2���q − �� �94�

Furthermore, the position-fixed harmonic load is a point load,
which corresponds to r0=0. By taking limit r0→0 to Eqs.
�93a�–�93d� one obtains

u�r,Z,t� = −
�0ei�t

2�
�

0

�

�J1��r��12��,Z,��d� �95a�

w�x,y,Z,t� = −
�0ei�t

2�
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0

�

�J0��r��22��,Z,��d� �95b�


rz�x,y,Z,t� = −
�0ei�t

2�
�

0

�

�J1��r��32��,Z,��d� �95c�

Table 2 Values of parameters used in numerical study

Parameters Values

E1 0.1794�1010 N /m2 �0.26 Gpsi�
E3 0.0138�1010 N /m2 �20 kpsi�
�1 0.35
�3 0.35
�1 140 pcf �2.2426�103 kg /m3�
�3 125 pcf �2.0023�103 kg /m3�
�h1 0.1524 m �6 in.�
�h3 0.3048 m �12 in.�
T0 0.001 s
�0 0.6296�105 N /m2 �P=2000 lb�
L1 0.2 m
L3 20 m
� 16� rad /s
E2 0.138�1010 N /m2 �0.2 Gpsi�
E4 0.00552�1010 N /m2 �8 kpsi�
�3 0.35
�3 0.3
�2 125 pcf �2.0023�103 kg /m3�
�4 110 pcf 1.762�103 kg /m3�
�h2 0.2032 m �8 in.�
�h4 0.762 m �30 in.�
T1 0.001 s
a 0.15 m
L2 0.2 m
L4 20 m
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Fig. 5 Vertical displacements and stresses at different locations
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6 Numerical Computation and Validation
Computation of dynamic response of multilayered viscoelastic

media subject to a moving distributed load requires numerical
evaluation of Eqs. �87a�–�87d�, which involves the triple integrals
in the infinite and semi-infinite intervals. These integrals are

highly oscillatory in nature as they contain Bessel functions in the
infinite and semi-infinite intervals. Such integrals require a great
deal of sophistication in the numerical computation. There are
special algorithms available for effective evaluation of such inte-
grals �38�. The algorithms adopted in this paper are the same as
those used in Ref. �8�, which are then coded and implemented
using MATLAB.

Dynamic response of a medium is influenced by a number of
factors, such as material properties, number of layers, velocity of
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Fig. 6 Comparison of elastic and viscoelastic responses
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the load, and spatial distribution of the load. We provide a valida-
tion study in this section by comparing numerical result of this
paper for a position-fixed harmonic load against known results in
the literature. A four-layer viscoelastic medium is used in this
paper for case study. A typical highway and airport pavement
structure consists of four layers: an asphalt concrete surface layer,
a sub-base layer, a subgrade layer made of granular materials, and
a soil foundation on top of rigid bedrock. A vertical harmonic
circular load given by Eq. �96� is applied on the free surface of a
four-layer viscoelastic medium on bedrock as in Fig. 4.

P�r,0,t� = �0ei�tH�r0 − r� �96�

Parameters of each layer and the setting of the problem are given
in Table 2 and Fig. 4.

Sun and Luo �8� solved transient wave propagation problem in
a multilayered viscoelastic medium subject to an arbitrary dy-
namic load. The derived solution has been verified using analyti-
cal solutions in degenerated condition as well as results obtained
from the finite element analysis. For comparison, a multilayered
medium is assumed to be stationary at time t=0, and then a sud-
den harmonic circular load corresponding to stress boundary con-
dition �z�r ,h1 , t� �h1=0=−�0ei�tH�a−r�H�t� is exerted. If the for-
mulated solution in this paper is correct, after an initial transition
phase, transient response of the medium should become stable and
identical to steady-state response of the same medium under Eq.
�96�. The transient response is obtained using a proven computer
program DYNALAYER

T �8�, while the steady-state response is ob-
tained using DYNAMOVE developed in this paper. Responses of the
medium at four locations are investigated: points A–D, as indi-
cated in Fig. 4.

Figure 5 shows vertical displacement at points A–D computed
for both steady-state and transient responses of a multilayered
elastic medium. In this figure continuous curves stand for steady-
state response, while discrete dots stand for transient response. It
can be seen that after a very short duration, say, 0.025 s, the
transition phenomenon dies out and the transient response ap-
proaches the steady-state response very quickly, and the match
between them is almost perfect. It is also observed that amplitudes
of displacement response at points A,and B decrease gradually as
depth z increases. It is also observed that the amplitude of dis-
placement response at point A is greater than that at point D. Both
observations are consistent with the intuition that response gets
reduced as the point of interest becomes away �horizontally or
vertically� from the load.

To compare steady-state responses of the same four-layered
elastic and viscoelastic media under a position-fixed harmonic cir-
cular load as studied in Fig. 5, numerical computation is carried
out. In this comparison, the surface layer of this four-layer me-
dium is viscoelastic and other layers remain elastic. Two types of
viscosity are used: Kelvin model and Maxwell model. Figure 6
shows vertical displacement at points A–C for Kelvin model and
for Maxwell model, respectively. In both plots in Fig. 6, there is a
significant phase delay of displacement response of the viscoelas-
tic medium compared with that of the elastic medium. Also, am-
plitudes of displacement response at points A–C decrease gradu-
ally. In addition, for a Kelvin viscoelastic model, amplitudes of
displacement response of the elastic medium at points A–C are
greater than those of the viscoelastic medium. Whereas for a Max-
well viscoelastic model, the situation is reverse, that is, amplitudes
of displacement response of the elastic medium at points A–C are
less than those of the viscoelastic medium. It should be noted that
these two observations are only valid for the parameters used in
this numerical study and may not necessarily represent a universal
conclusion. It is also found that, in both elastic and viscoelastic
multilayered media, the farther away the field point of interest is
from the center of the source load, the smaller the amplitude of
dynamic displacement response will be. This is consistent with the
intuition.

7 Conclusions
In this study analytical solution of steady-state dynamic re-

sponse of a multilayered viscoelastic medium to a moving distrib-
uted load is obtained. Efficient numerical algorithms based on fast
evaluation of various integral transformations and their inversions
are developed and validated through numerical example.
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A Thin Conducting Liquid Film on
a Spinning Disk in the Presence
of a Magnetic Field: Dynamics
and Stability
A theoretical analysis of the effects of a magnetic field on the dynamics of a thin non-
uniform conducting film of an incompressible viscous fluid on a rotating disk has been
considered. A nonlinear evolution equation describing the shape of the film interface has
been derived as a function of space and time and has been solved numerically. The
temporal evolution of the free surface of the fluid and the rate of retention of the liquid
film on the spinning disk have been obtained for different values of Hartmann number M,
evaporative mass flux parameter E, and Reynolds number Re. The results show that the
relative volume of the fluid retained on the spinning disk is enhanced by the presence of
the magnetic field. The stability characteristics of the evolution equation have been
examined using linear theory. For both zero and nonzero values of the nondimensional
parameter describing the magnetic field, the results show that (a) the infinitesimal dis-
turbances decay for small wave numbers and are transiently stable for larger wave
numbers when there is either no mass transfer or there is evaporation from the film
surface, and although the magnitude of the disturbance amplitude is larger when the
magnetic field is present, it decays to zero earlier than for the case when the magnetic
field is absent, and (b) when absorption is present at the film surface, the film exhibits
three different domains of stability: disturbances of small wave numbers decay, distur-
bances of intermediate wave numbers grow transiently, and those of large wave numbers
grow exponentially. The range of stable wave numbers increases with increase in Hart-
mann number. �DOI: 10.1115/1.3086589�

1 Introduction
The flow of a thin film of a viscous fluid over a smooth rotating

disk has attracted the attention of several investigations in science
and engineering due to its enormous applications in many indus-
trial processes that range from the intensification of heat and mass
transfer processes in chemical reactors to powder production in
metallurgy. The production of thin films on substrates placed in
the grooves of a rotating disk is referred to as “spin coating” in the
literature and this technique is employed in coating: very thin and
uniform films of photoresist on silicon wafers for integrated cir-
cuits, very thin layers of magnetic paint, magnetic storage disks,
fabrication of thin uniform layers of plastic scintillator on support-
ing aluminized Mylar, and so on. In spite of the difficulties in
modeling this flow mathematically due to the variation in accel-
eration along the radius, the flow over a spinning disk has lent
itself more naturally to potential technological exploitation due to
the possibility of controlling the local accelerations. The final
thickness of the film and the uniformity in the thickness are cen-
tral issues in these applications and they are observed to be influ-
enced by several factors such as the viscosity of the liquid film,
different spin-up protocols, heat and mass transfer processes, sur-
face tension effects, and so on.

Since the pioneering study by Emslie et al. �1� on the hydrody-
namic analysis of the flow of a Newtonian fluid on a spinning
disk, a number of theoretical and experimental studies of the spin-
coating process that include modeling of flow over a rotating disk,
wave generation in a liquid film moving on the surface of a rotat-

ing disk, and stability characteristics of a thin film on a rotating
substrate have been reported �2–12�. Reisfeld et al. �12� consid-
ered the dynamics and stability of thin liquid films during spin
coating with constant rates of evaporation or absorption. They
have derived a nonlinear evolution equation describing the shape
of the film interface as a function of space and time and examined
its stability using linear theory. Their results show that when there
is either no mass transfer or there is evaporation from the film
surface, infinitesimal disturbances decay for small wave numbers
and are transiently stable for larger wave numbers. When absorp-
tion is present at the free surface, the film exhibits three different
domains of stability: disturbances of small wave numbers decay,
disturbances of intermediate wave numbers grow transiently, and
those of large wave numbers grow exponentially. The experimen-
tal investigations of flow over a spinning disk have considered the
measurements of the local maximum or local mean film thickness
�13–21� and have determined the characteristics of flow over a
spinning disk. These studies have led to modified versions of Nus-
selt formula that have been developed to fit the observations.

Modeling studies of the flow over a spinning disk have consid-
ered the stationary axisymmetric waveless flow in the limit of
large Eckman number E, where E=� /�Hc

2, Hc is a characteristic
film thickness �20,22,23�, and steady axisymmetric solutions for
finite Eckman numbers in the framework of the boundary layer
approximation �24–27�.

The linear stability characteristics of flow over a spinning disk
has been addressed by several investigations that include the stud-
ies by Charwat et al. �14� for the case of large Eckman numbers,
Sisoev and Shkadov �27� for arbitrary Eckman numbers, and non-
axisymmetric disturbances and Needham and Merkin �28� for
large Eckman numbers in the presence of gravity for unsteady
flow driven by perturbations applied to the flux. Woods �20� con-
sidered a linear stability analysis of spiral perturbations using lu-
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brication approach. Sisoev et al. �10� extended the methods and
the results developed for the falling film problem �22� to model
the axisymmetric flow regimes observed to accompany the flow of
a thin liquid film over a spinning disk for a wide range of system
parameters.

There have also been investigations incorporating the influence
of heat transfer in the liquid phase and the thermocapillary force
at the liquid-gas interface on the development of flow and thick-
ness of the liquid film on a spinning disk, which arise due to the
temperature difference between the disk and the ambient gas and
the initial liquid �29–34�.

The investigations on flow and dynamics of liquid films on a
spinning substrate mentioned above reveal that the rate of film
thinning slows down beyond a specific height �depending on the
rotational speed� of the film. It has been observed, in general, that
the final stage of the film thickness is inversely proportional to the
square root of spinning time for � �spinning time� →�, so that the
spinner has to be operated for quite a long time in order to obtain
the desired thickness of the film. This is due to the action of the
centrifugal force, which pushes the liquid radially outward from
the surface of the disk. The film thins progressively and there is an
increase in viscous resistance with thinning, which in turn de-
creases the outward radial velocity. The radial flow practically
ceases after a sufficient lapse of time and during this period; the
chief mechanism of mass loss is due to evaporation only. A solid
skin is formed on the surface layer that puts greater resistance to
the remaining liquid for evaporation. Coating defects occur if the
convective flux does not completely cease before this skin hardens
sufficiently.

In order to avoid coating defects, one must look for mecha-
nisms that may either increase the rate of thinning or offer high
resistance to film thinning. It has been shown �34� that a film
thickness inversely proportional to spinning time � could be ob-
tained, for �→�, by imposing a specified axisymmetric tempera-
ture distribution on the disk. The results indicate that the rate of
thinning of the film could be accelerated and a desired thickness
of the film before the hardening of the skin could be obtained on
the spinning disk. Another way of increasing the rate of film thin-
ning has been noticed by Strong and Middleman �35� and Rehg
and Higgins �3�, namely, that the rate of film thinning increases
due to the shear induced by air flow over the surface of the film

A mechanism that offers high resistance to film thinning has
been indicated by Ray and Dandapat �36�, who showed that a
magnetic field normal to the substrate puts greater resistance on
film thinning right from the beginning of rotation. They have fur-
ther observed �37� that the thermocapillary force has a profound
effect in enhancing the thinning rate of the film, even in the pres-
ence of a large Hartmann number. The stability is based on the
assumption of a small Reynolds number and uniform rotation of
the disk. The effects of large Reynolds number, as well as non-
uniform rotation, have been examined in the presence of a trans-
verse magnetic field by Dandapat and Layek �38�. They predicted
that an initial impulse rotation followed by an accelerated angular
velocity until the desired film thickness is obtained would increase
the rate of thinning. Furthermore, they have concluded that in-
creasing the angular velocity could decrease the likelihood of hard
skinning commonly observed in spin coating. They suggested that
a transverse magnetic field would stabilize the liquid flow in the
spin-coating process, resulting in suppressed nonuniformities on
the film surface. The numerical solution for the development of a
thin conducting film on a smooth surface of a spinning disk in the
presence of a magnetic field, including inertial effects, has been
obtained �39� for different spin-up protocols and it has been
shown that the film thickness increases with the increase in Hart-
mann number, M, and the rate of depletion is more for small M
than for large M. The inclusion of a magnetic field in the investi-
gations �40,41� has some significance insofar as a magnetic field
is likely to suppress any irregularities on the film surface by ex-

erting a stabilizing influence on the flow. The above investigations
have not examined the instabilities that arise during spin coating,
in the presence of a transverse magnetic field.

In view of this, the present study addresses the dynamics and
stability characteristics of a viscous conducting film over a spin-
ning disk in the presence of a transverse magnetic field and it
extends the investigation by Reisfeld et al. �12�. A model equation
describing the temporospatial behavior of the film interface valid
for spin-coating applications in the presence of a transverse mag-
netic field has been derived using a lubrication approximation. A
linear stability analysis of this model equation has been consid-
ered and the conditions for film instability in several regimes of
interest have been derived. The results show that infinitesimal
disturbances decay for small wave numbers for different values of
Hartmann number considered and that they are transiently stable
for larger wave numbers, when there is either no mass transfer or
there is evaporation from the film. On the other hand, when ab-
sorption is present at the film surface, the film exhibits three dif-
ferent domains of stability: disturbances of small wave numbers
decay, those of intermediate wave numbers remain transiently
stable, and large wave number disturbances grow exponentially. It
has been observed that the range of stable wave numbers increases
with increase in Hartmann number M showing that the effect of a
magnetic field is to stabilize the film flow system.

2 Mathematical Formulation
An axisymmetric flow of a viscous electrically conducting fluid

with constant properties on a rotating disk is considered. A system
of cylindrical coordinates �r ,� ,z� that rotates with the disk at an
angular velocity � about the z-axis is used, where r measures the
radial distance from the center of the disk, � is the angle from
some fixed radial line in the horizontal plane, and z measures the
distance vertically upward from the solid surface of the disk. A
uniform magnetic field B0 acts parallel to the axis of rotation of
the disk �Fig. 1�.

In this investigation, a flow model that has been widely used in
previous magnetohydrodynamics �MHD� boundary layer studies
has been employed. First, the externally applied electric field has
been arranged to be zero �e.g., with the use of an excellently
conducting disk and other suitable wiring �42��. Then it is as-
sumed that within the viscous boundary layer, the electric and
magnetic fields E and B are not significantly different from their
values at the disk surface �42�, which implies that the induced
electric and magnetic fields are negligibly small but not identi-
cally zero. In other words, the viscous boundary layer is assumed
to be much thinner than the magnetic boundary layer. It is worth
mentioning here that such simplifications have been verified for
stagnation point flows by Neuringer and McIlroy �43�, Rossow
�44�, and Rathbun �45�, who found that the induced electric field
and magnetic field can be neglected if the magnetic Prandtl num-
ber Prm=�e�0��1, where �0 is the magnetic permeability, �e is

Fig. 1 Schematic representation of film flow on a rotating disk
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the electrical conductivity, and � is the kinematic viscosity �Prm
can also be regarded as the ratio of fluid viscosity � to the mag-
netic viscosity ��0�e�−1�. For ionized air Prm�10−5–10−6 and for
liquid mercury at room temperature and electrolytes �43,44�, Prm
=10−7. Hence the induced electric and magnetic fields can be
neglected for a wide range of fluids. Sparrow and Cess �42� ar-
gued that the same conclusions are also valid for the flow over a
spinning disk. In view of this, only the applied magnetic field
plays a role and gives rise to the Lorentz force G= �Gr ,G� ,0� with
components Gr=−�eB0

2u /	 and G�=−�eB0
2v /	 in the r and � in-

creasing directions, where 	 is the density and v= �u ,v ,w� is the
fluid velocity vector in the cylindrical coordinate system. The
liquid-gas interface is located at z=h�r , t�, where h is the film
thickness. The outward unit normal vector, n, and unit tangent
vectors t1 and t2 are given by

n = �− hr,0,1��1 + hr
2�−1/2, t1 = �1,0,hr��1 + hr

2�−1/2, t2 = �0,1,0�
�1�

Under the above assumptions, the continuity and the Navier–
Stokes equation modified to include Lorentz forces due to mag-
netohydrodynamic interactions governing the unsteady flow of a
liquid film on the rotating disk can be expressed as �36,39,42,46�

� · v = 0 �2�

�vt + �v · ��v� = −
1

	
� p +

1

	
� · � − �2� 
 v + � 
 �� 
 r� + g�

+ G �3�

where p and � are the pressure and the viscous stress tensor of the
liquid; �= �0,0 ,�� is the angular velocity vector; g= �0,0 ,g� is
the gravitational vector, and r= �r ,0 ,0�. The boundary conditions
are

v = 0 on z = 0 �no-slip condition� �4�

n · T · n = − � · n � on z = h�r,t�

�balance of normal stress at the free surface� �5�

n · T · t1 = 0 on z = h�r,t�

�balance of shear stress at the free surface� �6�

n · T · t2 = 0 on z = h�r,t�

�balance of shear stress at the free surface� �7�

	�v − v�i�� · n = J on z = h�r,t�

�kinematic boundary condition at the free surface� �8�

where T is the stress tensor, � is the coefficient of surface tension,
J is the constant evaporative mass flux from the free surface, v�i� is
the velocity of the interface, and v�i� ·n=ht�1+hr

2�−1/2. It is as-
sumed that changes in solvent concentration in the film are small
and the evaporation from the interface takes place at a constant
rate.

Nondimensionalizing the governing equations and the boundary
conditions using dimensionless �asterisks� variables

h� =
h

h0
, z� =

z

h0
, r� =

r

L
, t� =

t�2h0
2

�

u� =
u�

�2Lh0
2 , v� =

v�2

�3Lh0
4 , w� =

w�

�2h0
3 , p� =

p

	�2L2 �9�

where h0, L, and � are the initial mean film thickness, the disk
radius, and the kinematic viscosity, respectively. After scaling, the
governing equations and boundary conditions are obtained as �af-
ter dropping asterisks�

� Re�ut + uur + wuz� − �2 Re2v2

r
= − pr + r + 2� Re v

+ �2�urr +
ur

r
−

u

r2� + uzz − M2u �10�

� Re�vt + uvr +
uv
r

+ wvz� = �2�vrr +
vr

r
−

v
r2� + vzz − 2u − M2v

�11�

�3 Re�wt + uwr + wwz� = − pz + �4�wrr +
wr

r
� + �2wzz −

� Re

F2

�12�

ur +
u

r
+ wz = 0 �13�

u = v = w = 0 on z = 0 �14�

− p + 2�2�1 + �2hr
2�−1��2urhr

2 + wz − uzhr − �2wrhr�

=
�3We

r�1 + �2hr
2�3/2 �hr + �2hr

3 + rhrr� on z = h�r,t� �15�

2�2hr�wz − ur� + �1 − �2hr
2��uz + �2wr� = 0 on z = h�r,t�

�16�

vz − �2hr�vr −
v
r
	 = 0 on z = h�r,t� �17�

�− ht − uhr + w��1 + �2hr
2�−1/2 =

2E

3
on z = h�r,t� �18�

where �=h0 /L is the aspect ratio, Re=U0h0 /� is the Reynolds
number, U0=�2Lh0

2 /�, F=
U0
2 /gh0 is the Froude number, We

=� /	�2Lh0
2 is the Weber number, M is the Hartmann number

given by M2=�B0
2h0

2 /�, and E=3J /2	�U0 is the dimensionless
mass flux.

In the present study, evaporation from the film surface is taken
to be a constant throughout spinning and it is quite a reasonable
approximation as long as the spinning rate is held constant. Mey-
erhofer �47� was the first to estimate the effect of solvent evapo-
ration on final coating thickness. He added a constant evaporation
term, which is effectively the contribution to the interface velocity
that is driven by the evaporation process alone to the equation. His
arguments revealed that evaporation becomes a dominant process
for a critical film thickness and that it takes place in concert with
film thinning as the film solidifies. At this stage, the film thickness
is a function of evaporation. However, the present study is con-
cerned with the phase of spin coating that occurs shortly after the
liquid film is delivered to the disk surface and the liquid film is
assumed to be flat and relatively thick ��500 �m� so that the
Reynolds number for the flow is appreciable and the film thins
due to radial drainage and evaporation. Furthermore, it is to be
remarked that such an assumption about evaporation �as a con-
stant� has been considered in the investigation of dynamics and
stability of a liquid film on a spinning disk by Reisfeld et al. �12�.

Typical values of the physical parameters and the correspond-
ing dimensionless parameters listed in Table 1 of Ref. �12� have
been used and are given by
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h0 = 5 
 10−2 cm, L = 5 cm; � = 100 s−1, �

= 20 dynes/cm, 	 = 1.0 g/cm3

� = 1 cm2/s, J = 1.0 
 10−3 cm/s, � = 0.01, Re = 6.2, We

= 0.15

�2We = 1.5 
 10−5, Fr−2 = 3.1 
 10−3, E = 1.2 
 10−3

�19�
The computations have been performed for different values of
Hartmann number.

3 Derivation of Evolution Equation
The dependent variables u, v, w, and p are expanded in powers

of � as

�u,v,w,p� = �
n=0

N

�n�u�n�,v�n�,w�n�,p�n�� �20�

and are substituted in Eqs. �10�–�17�. Equation �20� is based on
the assumption that the ratio of the film thickness to the radius of
the substrate �rotating disk� is exceedingly small. Such a proce-
dure is analogous to a long-wave analysis and lubrication approxi-
mation used by Reisfeld et al. �12� for a liquid film on a spinning
disk and that used by Benney �48� and Atherton and Homsy �49�
for falling liquid films and those used by Williams and Davis �50�
and Burelbach et al. �51� for isothermal and heated thin liquid
films. The zeroth order and first order equations are

− p0r + r + u0zz − M2u0 = 0

v0zz − 2u0 − M2v0 = 0

− p0z = 0

u0r +
u0

r
+ w0z = 0 �21�

u0 = 0, v0 = 0, w0 = 0 on z = 0 �22�

− p0 = 0, u0z = 0, v0z = 0 on z = h �23�
and

Re�u0t + u0u0r + w0u0z� = − p1r + 2 Re v0 + u1zz − M2u1

Re�v0t + u0v0r +
u0v0

r
+ w0v0z� = v1zz − 2u1 − M2v1

− p1z −
Re

F2 = 0

u1r +
u1

r
+ w1z = 0 �24�

u1 = 0, v1 = 0, w1 = 0 on z = 0 �25�

p1 = − �2We�hrr +
hr

r
� on z = h �26�

u1z = 0 on z = h �27�

v1z = 0 on z = h �28�
The solutions of Eqs. �21�–�28� give the radial and axial velocities
and are presented in Appendix. Substituting Eqs. �A1� and �A2�
into the kinematic boundary condition at the free surface given by
Eq. �18�, the evolution equation is obtained as

ht +
2

3
E +

2h

M2 −
2 sinh Mh

M3 cosh Mh
+

rhr sinh2 Mh

M2 cosh2 Mh

+ � Re� 14 sinh Mh

3M7 cosh3 Mh
+

61 sinh 2Mh

6M7 cosh2 Mh
−

13h

M6 cosh2 Mh

−
2h

M6 cosh4 Mh
−

10h

M6 −
4h2 sinh Mh

M5 cosh3 Mh
+

4E�cosh Mh − 1�
3M4 cosh2 Mh

−
2Eh sinh Mh

3M3 cosh3 Mh

 + � Re�rhr�� 12h sinh Mh

M5 cosh3 Mh
−

5

M6

−
11

2M6 cosh2 Mh
+

21

2M6 cosh4 Mh
+

4h2

M4 cosh2 Mh

−
6h2

M4 cosh4 Mh
+

11h sinh Mh

2M5 cosh5 Mh
−

2E sinh Mh

3M3 cosh2 Mh

+
E sinh Mh

M3 cosh3 Mh
+

2Eh

3M2 cosh2 Mh
−

Eh

M2 cosh4 Mh



+ � Re�r2hrr��−
3 sinh2 Mh

2M6 cosh4 Mh
+

h sinh Mh

M5 cosh3 Mh

+
h sinh Mh

2M5 cosh5 Mh

 + � Re�r2hr

2��−
11 sinh Mh

2M5 cosh5 Mh

−
2h

M4 cosh2 Mh
+

h

M4 cosh4 Mh
+

5h

2M4 cosh6 Mh

+
4 sinh Mh

M5 cosh3 Mh

 + � � Re

F2M2�hrr +
hr

r
	 −

�3We

M2r3 �r3hrrrr

+ 2r2hrrr − rhrr + hr�
� sinh Mh

M cosh Mh
− h� − � � Re hr

F2M2

−
�3We

M2r2 �r2hrrr + rhrr − hr�
hr sinh2 Mh

cosh2 Mh
= 0 �29�

In deriving Eq. �29�, the term ht contained within Re term is
replaced by its leading order representation in terms of r, h, and
its spatial derivatives. It is assumed that E, F−2, and �2We are
O�1� as �→0. Equation �29� describes the shape of a thin liquid
film interface on a rotating substrate in the presence of a magnetic
field. Equation �29� describes the evolution of a thin liquid film on
a rotating substrate when centripetal force, inertia, mass transfer
from the free surface, magnetic field, gravity, and surface tension
are all important.

Although the effect of gravity and surface tension are important
in planarization studies �5,42�, where the leveling of liquid films
on rough rotating disk are investigated, for spin-coating applica-
tions Re /F2 �effect of gravity� and �2We �effect of surface ten-
sion� are very small and the contribution of the terms associated
with them in Eq. �29� is exceedingly small ��10−5–10−8� and
hence can be neglected for further analysis. The evolution equa-
tion for further analysis is given by

ht +
2

3
E +

2h

M2 −
2 sinh Mh

M3 cosh Mh
+

rhr sinh2 Mh

M2 cosh2 Mh

+ � Re� 14 sinh Mh

3M7 cosh3 Mh
+

61 sinh 2Mh

6M7 cosh2 Mh
−

13h

3M6 cosh2 Mh

−
2h

M6 cosh4 Mh
−

10h

M6 −
4h2 sinh Mh

M5 cosh3 Mh
+

4E�cosh Mh − 1�
3M4 cosh2 Mh

−
2Eh sinh Mh

3M3 cosh3 Mh

 + � Re�rhr�� 12h sinh Mh

M5 cosh3 Mh
−

5

M6

−
11

2M6 cosh2 Mh
+

21

2M6 cosh4 Mh
+

4h2

M4 cosh2 Mh
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−
6h2

M4 cosh4 Mh
+

11h sinh Mh

2M5 cosh5 Mh
−

2E sinh Mh

3M3 cosh2 Mh

+
E sinh Mh

M3 cosh3 Mh
+

2Eh

3M2 cosh2 Mh
−

Eh

M2 cosh4 Mh



+ � Re�r2hrr��−
3 sinh2 Mh

2M6 cosh4 Mh
+

h sinh Mh

M5 cosh3 Mh

+
h sinh Mh

2M5 cosh5 Mh

 + � Re�r2hr

2��−
11 sinh Mh

2M5 cosh5 Mh

−
2h

M4 cosh2 Mh
+

h

M4 cosh4 Mh
+

5h

2M4 cosh6 Mh

+
4 sinh Mh

M5 cosh3 Mh

 = 0 �30�

It is to be remarked that Eq. �30� reduces to the evolution equation
derived by Resifeld et al. �12� when M goes to zero, and to those
of Emslie et al. �1�, Strong and Middleman �35�, and Hwang and
Ma �53� when M goes to zero and Re goes to zero. In what
follows, the numerical solution of Eq. �30� is obtained by using
Crank–Nicolson finite-difference scheme. The boundary condi-
tions at the center of the disk r=0 are determined from the sym-
metry conditions as

�h�r = 0,t�
�r

= 0 �31�

The boundary condition at the edge of the finite disk cannot be
prescribed in a simple mathematical form due to the complicated
edge effect, known as the “tea-pot” effect �2,52�; further Reisfeld
et al. �12� pointed out that specifying appropriate boundary con-
ditions at the edge of the disk is difficult and that it requires an
intimate understanding of the complicated time-dependent film
rupture process taking place in that region. For thin films, this
effect is regarded as a local phenomenon occurring at the edge and
is thought to have negligible influence on the solution away from
the edge �2,52�. One of the ways of prescribing the boundary
conditions at the edge of the disk suggested by Tu �52�, Hwang
and Ma �53�, and Kim et al. �54� and implemented in their analy-
sis of thin liquid film on a spinning disk is as follows: They have
assumed that the disk hypothetically extends beyond the edge as a
smooth flat surface and have taken the boundary condition at the
edge of the disk as follows: Let the edge of the disk be rmax. Then
a boundary condition at r=rmax is

�h

�r
�r = rmax,t� = 0 �32�

The second way of imposing the boundary condition at the edge
of the disk is to use the asymptotic properties of Eq. �30� at large
values of the radius and use the corresponding results as the con-
dition at large radial distances �that is, at the edge of the disk�. The
initial condition is furnished by h�r ,0�, which gives the initial
distribution of the height of the free liquid surface.

Thus, the problem of investigating the magnetic field effects on
a liquid film flow during spin coating reduces to solving Eq. �30�
for h�r , t� subject to the boundary conditions �31� and �32� and the
initial conditions. It is of interest to compute the total volume Q�t�
of the liquid that remains on the rotating disk and it is given by

Q�t� = 2
�
0

rmax

rh�r,t�dr �33�

4 Numerical Solution and Results
The nonlinear equation �30� is solved numerically by Crank–

Nicolson finite-difference scheme by approximating all the spatial
derivatives by central differences �53�. The finite domain �0,rmax�

is uniformly partitioned by points �r0 ,r1 ,r2 . . .rn=rmax�, where
r0=0 and rn=rmax=n��r�. The finite-difference approximation of
Eq. �30� over the discretized domain is obtained and the boundary
conditions �31� and �32� are given by

h−1
j = h1

j

hn
j = hn+1

j �34�

The last condition makes sense in view of the assumption that the
disk extends beyond the edge as a smooth flat surface. The con-
dition implies that beyond the edge of the disk, the film thickness
remains the same at all points on the smooth disk. The coefficient
matrix A of the algebraic system

A�V j,V j+1�V j+1 = f�V j,V j+1� �35�

has a tridiagonal form, where the column vector V j+1 is given by

V j+1 = �h0
j+1,h1

j+1, . . . ,hn
j+1�T �36�

An iteration procedure is required for every time step. At time step
j+1, the column vector Vm

j+1 is determined by solving the finite-
difference equation

A�V j,Vm−1
j+1 �Vm

j+1 = f�V j,Vm−1
j+1 � �37�

where Vm
j+1 is the column vector of unknowns at the mth iteration,

and Vm−1
j+1 is the output vector obtained in the previous iteration.

For the first iteration, which determines V1
j+1 and V1

j+1, is used for
V0

j+1. The numerical algorithm constructed is found to be stable,
and the global error of the numerical scheme is O���t�2 , ��r�2�
due to the application of Crank–Nicolson scheme. The iterations
are repeated until the relative error at each node is less than 10−6

for the unknown hi
j+1.

The numerical solution of Eq. �30� subject to boundary condi-
tions �34� and initial condition are obtained using the above
computational method for typical parameter values given by Re
=6.2 and 0.0, �=0.01, E=−0.0012,0 ,0.0012, and M =2,4 ,6
�12,40,41�.

Figures 2 and 3 show the results of the numerical computation
for the film thickness at different Hartmann numbers for sinu-
soidal initial distribution �SU: H0=1+0.2 cos�
r�� when Re=6.2,
E=0, and t=0.5, 1, 5, 10, 20, 30, 40, and 50. It is observed that
film thickness decreases with an increase in time for all values of
Hartmann number M, and as the magnetic effect increases the rate
of depletion decreases and hence more fluid is retained on the
spinning disk. The successive surface contours flatten out
smoothly, and the nonuniformity in the initial film thickness is
effectively reduced as time increases. The smoothing effect pro-
duced by the flow is observed as time increases in the case of
sinusoidal initial contour. Furthermore, as M increases, more time
is required to flatten out smoothly. Also, the results reveal that
with much increased spin-coating duration, the magnetic field sig-
nificantly increases the film flatness in the long run. That is, for a
fixed M, as t increases, the film thickness decreases and becomes
more flat.

The relative volume Q /Q0 of the film retained on the rotating
substrate at time t, where Q0 is the initial fluid volume on the disk
for the initially sinusoidal film distribution is shown in Fig. 4 for
different mass fluxes E and Hartmann numbers M. It is observed
that as M increases, the rate of retention of the conducting fluid on
the spinning disk increases for all values of E. For a particular
Hartmann number M, absorption �E�0� retains more fluid on the
disk as time increases as compared with evaporation �E�0�.

Figure 5 presents the relative volume of the film retention for
different values of M, when Re=0 and E=0. Although planariza-
tion and thinning of the film are affected by inertia, the changes
are not very significant.
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Different initial distributions of the height of the film �1� lead to
different relative volume �Q /Q0� of the conducting fluid retained
on the spinning disk �Figs. 6 and 7� and this is illustrated by
taking Gaussian plus �GP� uniform initial contour �H0=k�1
+exp�−r2��� and slowly falling �SF� curve �H0=1 / �1+r2�1/4� as
initial distributions of film thickness. The value of k is chosen
such that the initial volumes Q0 of liquid films on the substrate for
both the initial distributions are the same. It is observed that
slowly falling initial distribution retains more liquid on the spin-
ning substrate than the Gaussian plus initial distribution, and this
scenario is more pronounced in the initial times for all values of
M considered. As the spinning continues, this trend is observed
for larger values of M. The numerical study reveals that the mag-

netic field imparts a rigidity to the conducting fluid and hence
might help in enhancing the rate of retention of the liquid film. In
Sec. 5, time-dependent spatially uniform basic state is examined
and its stability to long-wave disturbances is analyzed. Such an
analysis of the linear stability of a nonstationary problem has been
performed by several researchers including Joo et al. �55�.

5 Description of Time-Dependent Basic State
The stability characteristics of the nonlinear equation �30� de-

scribing the shape of the film thickness as a function of space and
time is examined using linear theory. As the film is draining due to
centrifugation, the basic state is time dependent and it is assumed
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to be flat. The film thickness is independent of the radial position
and therefore the dependence on r is removed by using the fol-
lowing transformation �2�:

h = h̄�t�

u = rū�z,t�

v = rv̄�z,t�

w = w̄�z,t� �38�

where quantities with an overbar denote the basic-state quantities.
The resulting nonlinear ordinary differential equation governing
the basic-state behavior is obtained as
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h̄t +
2

3
E +

2h̄

M2 −
2 sinh Mh̄

M3 cosh Mh̄
+ � Re� 14 sinh Mh̄

3M7 cosh3 Mh̄

+
61 sinh 2Mh̄

6M7 cosh2 Mh̄
−

13h̄

3M6 cosh2 Mh̄
−

2h̄

M6 cosh4 Mh̄
−

10h̄

M6

−
4h̄2 sinh Mh̄

M5 cosh3 Mh̄
+

4E�cosh Mh̄ − 1�

3M4 cosh2 Mh̄
−

2Eh̄ sinh Mh̄

3M3 cosh3 Mh̄

 = 0

�39�
with

h̄�0� = 1 �40�

For fixed values of Hartmann number M and evaporation param-
eter E, Eqs. �39� and �40� are numerically integrated to give the
time-dependent basic-state behavior. Figure 8 shows the basic-
state film thickness for principal values of the evaporation param-
eter E and the Hartmann number M.

When the evaporation at the free surface is negligible �E=0�,
then the film thins due to drainage alone. In this case, film thick-
ness decreases monotonically in time and it goes to zero as t
→�. It takes a longer time to thin initially when the magnetic
field is present �Fig. 8�b�� and the film thickness tends to zero as
t→�.

When E�0, the fluid film thins both due to evaporation and
drainage. In this case, the basic state is a film that thins monotoni-
cally to zero thickness in a finite time �td=160��6.4 s� , M =0;
Fig. 8�a��. The presence of the transverse magnetic field delays
this and takes a longer time �td=178��7.12 s� , M =4�; Figs. 8�b�
and 8�c�� for the film to reach zero thickness.

In the case of absorption or condensation to the film �E�0�,
thinning of the film takes place due to absorption, drainage, and
inertia. Figure 8�a� shows that the basic state that reaches the

steady state �h̄s=0.106309, M =0�. The presence of the magnetic

field increases the film thickness �h̄s=0.10892, M =4; Fig. 8�b��.

The basic state is governed by Eq. �39� with E replaced by −�E�.
Once the steady state is reached, the position of the basic-state

interface h̄s is determined as the root of

2

3
�E� −

2h̄s

M2 +
2 sinh Mh̄s

M3 cosh Mh̄s

− � Re� 14 sinh Mh̄s

3M7 cosh3 Mh̄s

+
61 sinh 2Mh̄s

6M7 cosh2 Mh̄s

−
13h̄s

3M6 cosh2 Mh̄s

−
2h̄s

M6 cosh4 Mh̄s

−
10h̄s

M6 −
4h̄s

2 sinh Mh̄s

M5 cosh3 Mh̄s

−
4�E��cosh Mh̄s − 1�

3M4 cosh2 Mh̄s

+
2�E�h̄s sinh Mh̄s

3M3 cosh3 Mh̄s


 = 0 �41�

which for small values of � has the approximate solution satisfy-
ing

2

3
�E� −

2h̄s

M2 +
2 sinh Mh̄s

M3 cosh Mh̄s

= 0 �42�

In the limit M→0, the solution of Eq. �42� yields

h̄s � �E�1/3 �43�

which agrees with the results of Reisfeld et al. �12�.
It is interesting to consider the special case when absorption

exactly balances drainage and inertia. In this case, h̄s=1 for all
time and this yields a critical value of E=Ec, obtained from Eq.

�41� by substituting h̄s=1 in Eq. �41�. The results show that Ec=
−0.955246605 when M =0, Ec=−0.3867993513 when M =2, and
Ec=−0.14054192592 when M =4.

The investigation of the stability of the film using linear theory
is considered in Sec. 6.
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6 Linear Stability Analysis and Discussion
The linearized disturbance equation is obtained from Eq. �30�

by perturbing the basic state by a small amount ��h= h̄�t�
+���r , t�� and substituting in Eq. �30� and linearizing in distur-
bance amplitude � as

�t + a1�t�r2�rr + a2�t�r�r + a3�t�� = 0 �44�

where

a1�t� = � Re�−
3 sinh2 Mh̄

2M6 cosh4 Mh̄
+

h̄ sinh Mh̄

M5 cosh3 Mh̄

+
h̄ sinh Mh̄

2M5 cosh5 Mh̄

 �45�

a2�t� =
sinh2 Mh̄

M2 cosh2 Mh̄
+ � Re� 12h̄ sinh Mh̄

M5 cosh3 Mh̄
−

5

M6

−
11

2M6 cosh2 Mh̄
+

21

2M6 cosh4 Mh̄
+

4h̄2

M4 cosh2 Mh̄

−
6h̄2

M4 cosh4 Mh̄
+

11h̄ sinh Mh̄

2M5 cosh5 Mh̄
−

2E sinh Mh̄

3M3 cosh2 Mh̄

+
E sinh Mh̄

M3 cosh3 Mh̄
+

2Eh̄

3M2 cosh2 Mh̄
−

Eh̄

M2 cosh4 Mh̄



�46�

a3�t� =
2

M2 −
2 sinh Mh̄

M3 cosh Mh̄
�coth Mh̄ − tanh Mh̄�

+ � Re� 14 sinh Mh̄

3M7 cosh3Mh̄
�coth Mh̄ − 3 tanh Mh̄�

−
13

3M6 cosh2 Mh̄
�1 – 2h̄ tanh Mh̄�

+
61 sinh 2Mh̄

6M7 cosh2 Mh̄
�coth 2Mh̄ − 2 tanh Mh̄�

−
2

M6 cosh4 Mh̄
�1 – 4h̄ tanh Mh̄� −

10

M6

−
4 sinh Mh̄

M5 cosh3 Mh̄
�2h̄ + h̄2 coth Mh̄ − 3h̄2 tanh Mh̄�

−
4E tanh Mh̄

3M4 cosh Mh̄
+

8E tanh Mh̄

3M4 cosh2 Mh̄
−

2E sinh Mh̄

3M3 cosh3 Mh̄
�1

+ h̄ coth Mh̄ − 3h̄ tanh Mh̄�
 �47�

Transforming Eq. �44� into an equation with constant coefficients
by the transformation r=e�, �=ln r, gives

�t + a1�t���� + �a2�t� − a1�t���� + a3�t�� = 0 �48�

Using normal mode analysis and assuming the disturbance quan-
tity � in the form
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���,t� = H�t�eik0� �49�

where i=
−1, the equation for normal mode amplitude H�t� is
obtained as

Ḣ

H
= a1�t�

k2

�
− �a2�t� − a1�t��

ik

�

− a3�t� �50�

where k is defined as k=
�k0. The equation can be rewritten as

d ln H

dh̄
=

1

h̄t

�a1�t�
k2

�
− �a2�t� − a1�t��

ik

�

− a3�t�
 �51�

In what follows, attention is focused on the region away from the
origin where inertial effects are important and where the equations
are valid. Equation �51� is then numerically integrated to yield
normal mode amplitude by substituting Eq. �39�, which governs
the behavior of the thinning basic-state film for different values of
evaporation parameter E and Hartmann number M.

Equation �50� indicates that �H� will have an extremum point in
time and this gives the cutoff wave number kc. The cutoff wave
number kc increases with an increase in Hartmann number M. The
linear stability theory results reduce to those of Reisfeld et al. �12�
when Hartmann number M =0.

The case when there is no evaporation is considered first. Equa-
tion �39� with E=0 governs the behavior of the thinning basic-
state film in the presence of a transverse magnetic field. The so-

lution h̄ of Eq. �39� is substituted into the normal mode equation
�50�, and Eq. �50� is integrated to yield the normal mode ampli-
tude H�t�. Figures 9�a� and 9�b� present the magnitude of the
normal mode amplitude �H /H0� of the disturbance when Re=6.2,
�=0.01, and M =0,2, where H0 is the value of H at t=0. It is
observed that the amplitude of the disturbance decays to zero for
k2�kc

2 �Fig. 9�a�� and stable for lower wave numbers. It is to be
noted that kc=1.5554 when M =0 and kc=10.8184 for M =2. For
sufficiently large wave numbers �k2�kc

2�, the disturbance ampli-
tude increases in magnitude to a finite amplitude, but it ultimately
decays to zero �i.e., the disturbance is transiently stable �56�, Fig.

9�b��. Furthermore, it is to be remarked that �H /H0� grows tempo-

rarily in the interval h̄� �0,1� provided that k2�kc
2 and decays for

k2�kc
2. Furthermore, the results show that the effect of the mag-

netic field is to enhance the stability of a thin nonuniform con-
ducting film flow on a spinning disk. Although the amplitude of
the disturbance is larger for M =2 than M =0 when k2�kc

2, the
disturbance decays to zero earlier when M =2. When k2�kc

2, it
takes a longer time to attain a maximum finite amplitude when the
magnetic field is present. However, the disturbance decays to zero
earlier when the magnetic field is present than when it is absent
�Fig. 9�b��.

When the evaporation from the film surface is present, the basic
state of the film is governed by Eq. �39� with E�0. A dynamic
behavior of the perturbed state is obtained by integrating Eq. �50�.
In this case, �H /H0� exhibits both a region in which the distur-
bance is stable and a region in which it is transiently stable �Figs.
10�a� and 10�b��. The results show that the disturbance amplitude
�H /H0� grows initially and reaches its maximum amplitude at
about t=2��0.1 s� when M =0 and at about t=11��0.44 s�
when M =2 and then decays monotonically. As kc

2 increases with
M, the range of wave numbers where the disturbance remains
stable increases with increase with M.

In the case of absorption �E�0�, the normal mode equation far
from steady state position is given by Eq. �50� and �51� with E
replaced by −�E�. Once the steady state is reached, then the dif-
ferential equation governing the normal mode amplitude is given

by Eq. �50� with h̄ replaced by h̄s, which is a solution of Eq. �41�.
The results show that when the basic state is steady, the solution
for normal mode amplitude increases exponentially in time �Fig.
11�b�� and the film flow is unstable for k2�kc

2. If the cutoff wave
number is denoted by kc1

2 in this case and the cutoff wave number

is denoted by kc2

2 for the case when E=Ec�h̄s=1�, then the results
show that for the case of absorption to the film, the disturbance
shows three distinct regions of stability, namely, the disturbance is
stable for k2�kc2

2 �Fig. 11�a��, is transiently stable for wave num-

0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8

1

(a) Basic state, M = 0 (b) Basic state, M = 4

E < 0
E = 0
E > 0

E < 0
E = 0
E > 0

(c) Basic state, E > 0

M = 4

M = 0

time time

time

h
s

= 0.106309 h
s

= 0.10892

Fig. 8 Basic-state film thickness for principal values of the evaporation parameter
and different values of Hartmann number

041002-10 / Vol. 76, JULY 2009 Transactions of the ASME

Downloaded 04 May 2010 to 171.66.16.44. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



bers in the range kc2

2 �k2�kc1

2 �Fig. 11�c��, and is unstable for

k2�kc1

2 �Fig. 11�b��. The disturbance amplitude is larger in the

presence of a magnetic field and, since kc
2 increases with M, the

role of the magnetic field is to increase the region of stability. The
domains of instability for a rotating liquid film in the presence of
transverse magnetic field have been summarized in Fig. 12. It is
observed that in the limit M→0, kc1

2 reduces to 15 / �Re�E�4/3� and

kc2

2 reduces to 15/Re, which agree with the values predicted by
Reisfeld et al. �12�.

It is interesting to point out here that the following rescaling
reduces the number of nondimensional parameters by 1. Equation
�41� �when multiplied through by M3� can be written as

2

3
�E�� − 2h̄s

� + 2 tanh h̄s
� −

Re�

3
�14 tanh h̄s

� sech2 h̄s
� + 61 tanh h̄s

�

− 13h̄s
� sech2 h̄s

� − 6h̄s
� sech4 h̄s

� − 30h̄s
�

− 12h̄s
�2 tanh h̄s

� sech2 h̄s
� − 4�E���cosh h̄s

� − 1�sech2 h̄s
�
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+ 2�E��tanh h̄s
�sech2 h̄s

�� = 0 �52�

or more simply as

�E�� − 3h̄s
� + 3 tanh h̄s

� −
Re�

2
�2�7 + �E�� − 6h̄s

�2�tanh h̄s
� sech2 h̄s

�

+ 61 tanh h̄s
� − 4�E���cosh h̄s

� − 1�sech2 h̄s
� − h̄s

��6 sech4 h̄s
�

+ 13 sech2 h̄s
� + 30�� = 0 �53�

involving just the three parameters E�, h̄s
�, and Re� defined by

E� = M3E, h̄s
� = Mh̄s, Re� =

� Re

M4 �54�

rather than original four parameters E, h̄s, Re, and M. In addition,

Eq. �53� shows that the solution for h̄s
� is of the form

h̄s
� = f��E��,Re�� �55�

�for some function f�, so that the solution for h̄s is of the form

h̄s = f�M3�E�,
� Re

M4 	 �56�

In fact, Eq. �42� and all the other equations can be reduced in a
similar sort of way; for example, with the additional rescaling,

h�=Mh and t�=M−2t even the full evolution equations �29� and
�30� can be reduced. It is worth mentioning here that this rescaling
clearly shows the dependence on M and reveals interesting infor-
mation about the structure of the solution.

7 Conclusion
The effects of a magnetic field on the planarization and thinning

process of a viscous conducting fluid on a rotating disk and the
linear stability of the time-dependent spatially varying basic state
of the film flow system have been examined. The evolution equa-
tion describing the transient film thickness has been derived on the
basis of lubrication theory and small aspect ratio for the film. The
effects of magnetic field on the temporal evolution of the free
surface of the conducting fluid and the relative volume of the
conducting fluid retained on the disk have been studied for differ-
ent initial distributions of the height of the fluid film. The numeri-
cal solutions reveal that the magnetic field has a tendency to im-
part rigidity to the conducting fluid and hence might help in
enhancing the rate of retention of the liquid lubricant.

The linear stability analysis is performed in the region lying
away from the origin where inertial effects are important and
where the equations are valid. The results indicate that the infini-
tesimal disturbances decay for small wave numbers and are tran-
siently stable for large wave numbers, for both zero and nonzero
values of the Hartmann number, when either there is no mass
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transfer or there is evaporation from the film. When there is ab-
sorption through the film then the flow system exhibits three dif-
ferent domains of stability. It is observed that in the absence of
magnetic field, the localized solutions of the eigenvalue problem
and those of the linearized Navier–Stokes equations and boundary
conditions describing the axisymmetric wave regimes in a viscous
liquid film flow over a spinning disk �10� adequately capture the
properties of the full problem. The present study shows that when
M =0, the solutions of the eigenvalue problem behave analogously
and that the disturbance grows to a maximum, then decays, and
exhibits a transiently stable state. Furthermore, it is observed that
the solution of the eigenvalue problem in the presence of a mag-
netic field has similar behavior to that described above. This sug-
gests that the corresponding linearized solutions of the Navier–
Stokes equations incorporating the influence of a magnetic field
would predict the same behavior as the localized solution for the
corresponding values of the Hartmann number and this study
forms a part of our future work.
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Appendix
The radial and the axial velocities are obtained by solving Eqs.

�21�–�28� and are given by

u =
r

M2�1 −
cosh M�z − h�

cosh Mh
�

+
� Re r

M4 cosh2 Mh
� sinh Mh

M2 cosh Mh
sinh Mz + � 3

2M2

+
5 cosh2 Mh

M2 +
cosh 2Mh

6M2 	 cosh M�z − h�
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3h

M
sinh Mz

−
3

2M2 −
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�26� Sisoev, G. M., Taĺdrik, A. F., and Shkadov, V. Ya., 1986, “Flow of a Viscous
Liquid Film on the Surface of a Rotating Disc,” J. Eng. Phys., 51, pp. 1171–
1174.

�27� Sisoev, G. M., and Shkadov, V. Ya., 1990, “Helical Waves in a Liquid Film on
a Rotating Disc,” J. Eng. Phys., 58, pp. 573–577.

�28� Needham, D. J., and Merkin, J. H., 1987, “The Development of Nonlinear
Waves on the Surface of a Horizontally Rotating Thin Liquid Film,” J. Fluid
Mech., 184, pp. 357–379.

�29� Dandapat, B. S., and Ray, P. C., 1990, “Film Cooling on a Rotating Disk,” Int.
J. Non-Linear Mech., 25, pp. 569–582.

�30� Usha, R., and Ravindran, R., 2004, “Analysis of Cooling of a Conducting
Fluid Film of Non-Uniform Thickness on a Rotating Disk,” Int. J. Non-Linear
Mech., 39, pp. 153–164.

�31� Rehg, T. J., 1992, “Spin Coating of Monodisperse Colloidal Suspensions: Evi-
dence of Evaporative Convection,” Ph.D. thesis, University of California,
Davis.

�32� Usha, R., Ravindran, R., and Uma, B., 2005, “Dynamics and Stability of a
Thin Liquid Film on a Heated Rotating Disk—Film With Variable Viscosity,”
Phys. Fluids, 17, p. 102103.

�33� Wu, L., 2006, “Spin Coating of Thin Liquid Films on an Axisymmetrically
Heated Disk,” Phys. Fluids, 18, pp. 063602.

�34� Ddandapat, B. S., and Ray, P. C., 1993, “Flow of a Thin Liquid Film Over a
Cold/Hot Rotating Disk,” Int. J. Non-Linear Mech., 28, pp. 489–501.

�35� Strong, L., and Middleman, S., 1989, “Lubricant Retention on a Spinning
Disk,” AIChE J., 35, pp. 1753–1756.

�36� Ray, P. C., and Dandapat, B. S., 1994, “Flow of Thin Liquid Film on a Rotat-
ing Disc in the Presence of a Transverse Magnetic Field,” Q. J. Mech. Appl.
Math., 47, pp. 297–304.

�37� Dandapat, B. S., and Ray, P. C., 1998, “Effect of Thermocapillarity on the
Production of Conducting Thin Film in the Presence of a Transverse Magnetic
Field,” Z. Angew. Math. Mech., 78, pp. 635–640.

�38� Dandapat, B. S., and Layek, G. C., 1999, “Spin Coating in the Presence of a
Transverse Magnetic Field and Non-Uniform Rotation: A Numerical Study,” J.
Phys. D, 32, pp. 2483–2491.

�39� Usha, R., and Götz, T., 2001, “Spinning of a Liquid Film Flow on a Rotating
Disk in the Presence of a Magnetic Field—A Numerical Solution,” Acta
Mech., 30, pp. 1–15.

�40� Usha, R., and Uma, B., 2001, “Flow of a Thin Liquid Film Over a Rough
Rotating Disk in the Presence of Transverse Magnetic Field,” Z. Angew. Math.
Phys., 52, pp. 793–809.

�41� Usha, R., and Uma, B., 2002, “The Role of Induced Air Shear on the Devel-
opment of a Conducting Fluid Film Over a Rough Spinning Disk in the Pres-
ence of a Transverse Magnetic Field,” Z. Angew. Math. Mech., 82, pp. 211–
216.

�42� Sparrow, E. M., and Cess, R. D., 1962, “Magnetohydrodynamic Flow and
Heat Transfer About a Rotating Disk,” J. Appl. Mech., 29, pp. 181–187.

�43� Neuringer, J. L., and McIlroy, W., 1958, “Incompressible Two-Dimensional
Stagnation-Point Flow of an Electrically Conducting Viscous Fluid in the Pres-
ence of a Magnetic Field,” J. Aeronaut. Sci., 25, pp. 194–198.

�44� Rossow, V. J., 1958, “Magnetohydrodynamic Analysis of Heat Transfer Near a
Stagnation Point,” J. Aeronaut. Sci., 25, pp. 234–235.

�45� Rathbun, A. S., 1961, “On the Flow of an Electrically Conducting Fluid To-
ward a Stagnation Point in the Presence of a Magnetic Field,” Ph.D. thesis,
University of Pittsburgh, Pittsburgh.

�46� Kumari, M., and Nath, G., 2004, “Unsteady MHD Film Flow Over a Rotating
Infinite Disk,” Int. J. Eng. Sci., 42, pp. 1099–1117.

�47� Meyerhofer, D., 1998, “Characteristics of Resist Films Produced by Spinning,”
J. Appl. Phys., 47, pp. 3993–3997.

�48� Benney, D. J., 1966, “Long Waves on Liquid Film,” J. Math. Phys., 45, pp.
150–155.

�49� Atherton, R. W., and Homsy, G. M., 1976, “On the Derivation of Evolution
Equations for Interfacial Waves,” Chem. Eng. Commun., 2, pp. 57–77.

�50� Williams, M. B., and Davis, S. H., 1982, “Nonlinear Theory of Film Rupture,”
J. Colloid Interface Sci., 90, pp. 220–228.

�51� Burelbach, J. P., Bankoff, S. G., and Davis, S. H., 1988, “Nonlinear Stability of
Evaporating/Condensing Liquid Films,” J. Fluid Mech., 195, pp. 463–494.

�52� Tu, Y., 1983, “Depletion and Retention of Fluid on a Rotating Disk,” ASME J.
Lubr. Technol., 105, pp. 625–629.

�53� Hwang, J. H., and Ma, F., 1989, “On the Flow of a Thin Liquid Film Over a
Rough Rotating Disk,” J. Appl. Phys., 66, pp. 388–394.

�54� Kim, J. S., Kim, S., and Ma, F., 1991, “On the Flow of a Thin Liquid Film
Over a Rotating Disk,” J. Appl. Phys., 69, pp. 2593–2601.

�55� Joo, S. W., Bankoff, S. G., and Davis, S. H., 1991, “Long-Wave Instabilities of
Heated Falling Films: Two-Dimensional Theory of Uniform Layers,” J. Fluid
Mech., 230, pp. 117–146.

�56� Davis, S. H., 1976, “Stability of Time-Periodic Flows,” Annu. Rev. Fluid
Mech., 8, pp. 57–74.

041002-14 / Vol. 76, JULY 2009 Transactions of the ASME

Downloaded 04 May 2010 to 171.66.16.44. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



Bernhard Pichler1

Laboratory for Materials and Structures
(LMSGC),

Ecole Nationale des Ponts et Chaussées (ENPC),
6 et 8, Avenue Blaise Pascal,

F-77455 Marne-la-Vallée, France
e-mail: bernhard.pichler@lmsgc.enpc.fr

Luc Dormieux
Laboratory for Materials and Structures

(LMSGC),
Ecole Nationale des Ponts et Chaussées (ENPC),

6 et 8, Avenue Blaise Pascal,
F-77455 Marne-la-Vallée, France

e-mail: luc.dormieux@lmsgc.enpc.fr

Micromechanical Interpretation
of the Dissipation Associated
With Mode I Propagation of
Microcracks in Brittle Materials
This paper deals with the dissipation associated with quasistatic microcracking of brittle
materials exhibiting softening behavior. For this purpose an elastodamaging cohesive
zone model is used, in which cohesive tractions decrease (during crack propagation) with
increasing displacement discontinuities. Constant cohesive tractions are included in the
model as a limiting special case. Considering a representative volume element containing
a dilute distribution of many parallel microcracks, we quantify energy dissipation asso-
ciated with mode I microcrack propagation. This is done in the framework of thermody-
namics, without restricting assumptions on the size of the cohesive zones. Model predic-
tions are compared with exact solutions, which are accessible for constant cohesive
tractions. The proposed model reliably predicts both onset of crack propagation and the
dissipation during microcracking. It is shown that the energy release rate is virtually
equal to the area under the softening curve, if the microscopic tensile strength is at least
twice as large as the macroscopic tensile strength. This result justifies approaches relying
on the concept of constant energy release rate, such as those frequently used in the
engineering practice. �DOI: 10.1115/1.3086594�

Keywords: cohesive zone model, damage, dissipation, microcrack propagation brittle
materials, material softening, elastodamaging cohesive zone, micromechanics, theorem
of minimum potential energy, thermodynamics, cohesive zone size, energy release rate,
Lebesgue’s dominated convergence theorem

1 Introduction
Continuum micromechanics provides a promising theoretical

framework for studying microcracking in brittle media such as
cementitious materials or rock. The important role that microme-
chanical stiffness estimates play in describing the damaging influ-
ence of microcracks on the macroscopic �apparent� stiffness of the
studied material can be seen in Refs. �1–3� and the references
therein. Recently, such stiffness estimates were combined with
crack propagation criteria from linear elastic fracture mechanics,
see Refs. �4,5�. These combined fracture-micromechanics models
predict that stable microcrack propagation is associated with mac-
roscopic strain softening �i.e., with decreasing macrostresses, but
increasing macrostrains�, as is observed in macroscopic laboratory
testing of concrete and sandstone under uniaxial tension, see, e.g.,
Ref. �6�. It is emphasized that the two combined fracture-
micromechanics models predict �in agreement with experimental
observations� that microcracking is associated with energy dissi-
pation. Notably, in both approaches �i� the microcracks are repre-
sented as flat penny-shaped pores �i.e., as classical noncohesive
cracks�, and �ii� linear elastic behavior of the solid matrix is taken
into account. These aspects raise need for theoretical improve-
ment, since �i� there are infinite stresses at the edges of noncohe-
sive cracks, and since �ii� both models are not able to describe the
thermodynamical source of dissipation, but owe an explanation of
how dissipation occurs.

Cohesive zone models resolve the problem of the stress singu-

larities at the edges of classical cracks. Nowadays, a great variety
of such models are described in the open literature, representing
extensions of the independent pioneering works of Dugdale �7�
and of Barenblatt �8,9�, respectively. Considering quasistatic mi-
crocracking of brittle materials exhibiting softening behavior, an
elastodamaging cohesive zone model was recently proposed by
the authors �10�. Making use of the theorem of minimum potential
energy, the size of the cohesive zone was estimated based on a
class of kinematically admissible displacement fields, considering
a representative volume element �RVE� containing a dilute distri-
bution of many parallel noninteracting microcracks.

Herein, we use the elastodamaging cohesive zone model of
Pichler and Dormieux �10� in order to explain how dissipation
occurs during quasistatic microcracking of brittle materials exhib-
iting softening behavior. We aim at quantifying the amount of
dissipated energy, in the classical framework of thermodynamics.
Thereby, we neither restrict our considerations to cases where the
cohesive zone is small, as compared with the crack radius, nor do
we consider that the cohesive zone size is constant during crack
propagation; both of which are assumptions frequently used in the
pertinent literature. The outcome of this paper is meant to deliver
justifications �i� for micromechanical stiffness estimates for mi-
crocracked media relying on classical noncohesive cracks, see
Refs. �1–3�, and �ii� for approaches relying on the concept of
critical �dissipative� energy release rate. Achieving these aims
would open the door for further enhancing the micromechanical
description of microcracking processes in media such as cementi-
tious materials and rock.

This paper is organized as follows. In Sec. 2, we briefly de-
scribe the findings published in Ref. �10�, which are prerequisites
for the original contributions of this paper. The essential starting
points for the present work comprise the envisaged constitutive
behavior of the cohesive zones, as well as the estimates of the
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cohesive zone size. Section 3 contains original contributions. In
the framework of thermodynamics, we calculate the dissipation of
a single cohesive crack propagating in mode I. First, we deal with
constant cohesive tractions, then we extend our analysis toward
consideration of softening behavior in the cohesive zones. Finally,
we study the dissipation within an RVE containing a dilute distri-
bution of many propagating cohesive microcracks, which allows
for deriving an improved dilute stiffness estimate of the microc-
racked RVE. Section 4 deals with the validation of the model
described in Secs. 2 and 3. We compare model predictions with
accessible exact solutions, referring to the special case of constant
cohesive tractions. We list model predictions for �i� the size of the
cohesive zone, �ii� the relation between remote tensile stress and
the crack opening at the inner edges of the cohesive zones, and
�iii� the dissipation during crack propagation. Model predictions
are compared with corresponding exact solutions. With regard to
point �iii�, this comparison requires an exact expression for the
dissipation of a propagating elastodamaging cohesive crack with
constant cohesive tractions, which is so far not available in litera-
ture. The derivation of this exact dissipation expression comple-
ments the original contributions of this paper. Section 5 contains a
final discussion, conclusions, and an outlook to future research
work. There, we also incorporate the new results into the much
wider context of the combined fracture-micromechanics models
of Dormieux et al. �4� and Pichler et al. �5�, and we also point out
how both the scientific community, as well as practical engineers,
can gain benefit from the work described herein.

2 Fundamentals of the Proposed Approach

2.1 Elastodamaging Cohesive Zones: Constitutive Soften-
ing Law. Herein, we study quasistatic, i.e., time-independent,
microcracking2 such as that observed in displacement-controlled
tensile tests on cementitious materials or on rock. Therefore, we
do not make use of time-dependent cohesive zone models de-
signed to account for dynamic crack growth, such as, e.g., the
appealing approach of Glennie �11� introducing the magnitude of
cohesive tractions to be loading-rate dependent, or the one of
Siegmund and Needleman �12� modeling elastoviscoplastic cohe-
sive behavior. Due to the brittle nature of cementitious materials
and of rock observed under tensile loading, ductile effects are
unlikely to occur and, hence, elastoplastic cohesive zone models,
such as the ones by Tvergaard and Hutchinson �13�, do not appear
to be suitable in the present context. With regard to analyses of
macrocracking of structures made of cementitious materials or of
rock, a softening-type cohesive behavior is commonly introduced
to reproduce results from structural testing. Accordingly, cohesive
tractions decrease with increasing displacement discontinuities,
see the pioneering approach of Hillerborg et al. �14�, which in-
spired a large number of follow-up works, such as, e.g., Refs.
�15–17�. In accordance with these well-accepted macroscopic ap-
proaches, we consider here cohesive softening behavior on a
lower scale of observation. Consequently, we do not consider
brittle microcracking with cohesive hardening behavior, in which
cohesive tractions increase with increasing displacement discon-
tinuities, see, e.g., results from molecular dynamics analyses of
Yamakov et al. �18� dealing with brittle microcracking along the
�99 grain boundary in aluminum under isotropic tension. Never-
theless, such nanomechanical analyses raise the hope that molecu-
lar dynamics simulations will soon provide insight into cohesive
zone behavior of media as complex as cementitious materials or
rock.

In accordance with our focus on quasistatic microcracking of
brittle materials exhibiting softening behavior, we consider the
following elastodamaging cohesive zone model. We envision
ahead of every microcrack a zone in which some of the bonds
between formerly adjacent material particles are already broken,

whereas other bonds are still intact. To model this three-
dimensional damaged domain ahead of the microcracks, we intro-
duce a two-dimensional interface, referred to as cohesive zone.
Suitable for studying mode I propagation of microcracks, we con-
sider normal tractions Tn and normal displacement discontinuities
��n� in the cohesive zone, both of which normal with respect to the
two-dimensional interface. The constitutive relation between ��n�
and Tn is given by the elastic law

Tn = K���n����n� �1�

In Eq. �1�, K denotes the elastic stiffness of the cohesive zone,
which depends on the displacement discontinuity ��n�. The latter
represents the damage variable, motivating the expression “elas-
todamaging” cohesive zone model. With increasing displacement
discontinuity, i.e., with increasing damage, K���n�� decreases ac-
cording to the power law

K���n�� =
Tn

cr

��n��1 −
��n�
��n

cr��
�

�2�

where Tn
cr, ��n

cr�, and ��0 are material constants denoting
the maximum bearable �critical� tensile microstress, the �critical�
displacement discontinuity at which no tensile traction can be
transmitted across the interface anymore, and a dimensionless
constant governing the shape of the Tn-��n� relationship �see Fig.
1�, respectively.

In order to provide more insight into the cohesive zone stiffness
�Eq. �2��, it is useful to consider a material point P, which lies
originally ahead of a cohesive zone, being part of the �sane� elas-
tic material. The chosen approach implies that P becomes part of
the cohesive zone, once the stress tensor component �nn at P
becomes equal to Tn. Then, since progressive microcracking is
assumed, ��n� at P monotonously increases, i.e., the current value
of ��n� at P is—at the same time—also the maximum displace-
ment discontinuity that P has experienced so far

��n� = max
t

��n� �3�

This justifies introduction of ��n� as the damage variable in Eq.
�2�. Unloading �resulting in closure of the cohesive zone� and
reloading at constant damage �resulting in re-opening of the co-
hesive zone� can be accounted for simply by replacing ��n� in Eq.
�2� by maxt��n�, resulting in a linear elastic relationship between
Tn and ��n� reading as2Microcracking is used as a synonym for progressive microcrack propagation.

β = 10

β = 2
β = 5

β = 1

β = 0
β = 1/8
β = 1/4
β = 1/2

Tn

T cr
n

0

0 [[ξcr
n ]]

[[ξn]]

Fig. 1 Elastodamaging cohesive zone law „defined in Eqs. „1…
and „2……, relating cohesive normal tractions Tn to the normal
displacement discontinuities ��n� „also referred to as “soften-
ing curve”…; plotted for different values of the power law expo-
nent �
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Tn = K�max
t

��n����n�, K�max
t

��n�� =
Tn

cr

maxt��n��1 −
maxt��n�

��n
cr�

��

�4�
Equation �4� implies that the elastic cohesive zone stiffness—
which becomes “visible” upon unloading—depends on Tn

cr, ��n
cr�,

�, and maxt��n�, see �see Fig. 2�. Since the loading/unloading
branches in Fig. 2 �see diagram curves in the abscissa range from
zero to ��n

cr� /3� are linear elastic, they are related to a reversible
process �no dissipation�. This is a significant difference to the
dissipative hardening branches described in Ref. �18�. Anyway,
unloading-reloading cycles are not the present focus, but microc-
racking analyses will be carried out, for which the cohesive zone
model formulation provided in Eqs. �1� and �2� is to be used.

Linear softening curves, such as those used in, e.g., Refs.
�14,17�, and quadratic softening curves, as used in, e.g., Ref. �19�,
are included in Eq. �2� as the special cases �=1 and �=2, respec-
tively. While the cited works prove special cases of the proposed
model to be useful in research and in the engineering practice, the
aim of this paper is to deal with any value of � being equal to or
greater than zero. Notably, the power law �2� is appealing, since it
allows for studying an infinite amount of qualitatively different
Tn-��n� relationships, based on three material constants only. A
rather simple bilinear Tn-��n� relationship, for instance, would al-
ready require the introduction of four material constants.

2.2 RVE-Related Estimation of the Cohesive Zone Size.
Herein, we consider a representative volume element containing
an elastic matrix and many parallel cohesive microcracks. The
cracks are assumed to be significantly smaller than the character-
istic dimensions of the RVE �separation of scales�, and to be ar-
ranged disordered, rendering the macroscopic behavior of the
RVE transversely isotropic. In more detail, we consider N cracks
per unit volume, with normal vectors pointing in the x3 direction
�n=e3�. The cracks are represented as circular slits of radius a
+�, where � denotes the width of the cohesive zone, see Figs. 3
and 4. For the sake of simplicity, we assume a dilute distribution
of cohesive microcracks. Accordingly we do not account for crack
interaction, but we assume that the strain field in the vicinity of a
crack within the RVE can be suitably approximated by the strain
field in the vicinity of a single crack embedded in an infinite
matrix, which is subjected at infinity to the same Hashin boundary
conditions as the RVE, described next: The RVE is subjected, on
its boundary ��, to displacement vectors ��x� corresponding to
uniform macroscopic strains E reading as �20�

��x� = E · x with x � �� �5�

In Eq. �5�, � and x denote the displacement vector and the position
vector, respectively, and E stands for the tensor of “prescribed”
macroscopic strains. In accordance with the assumed cracking
mode I, we consider macroscopic strains in the form

E = E33e3 � e3 + E�at�e1 � e1 + e2 � e2� �6�
With regard to the theoretical basis for the estimation of the

cohesive zone size, it is worth emphasizing that we have restricted
our considerations to stable and time-independent microcracking,
such as observed in displacement-controlled macroscopic labora-
tory tests on concrete or sandstone �6�. Such tests can be stopped
at any arbitrary time instant, even in the softening regime �21�. If
this is done, the stresses within the specimen will be in equilib-
rium with the current macroscopic loading and no irreversible
processes will take place since the cracks will remain stationary at
their current sizes �no increase in damage�. The situation obtained
after stopping the tension test is—assessed from the viewpoint of
the proposed model—a purely elastic equilibrium configuration.
Accordingly, the theorem of minimum potential energy can be
used to estimate the size of the cohesive zone for that configura-
tion. The process of microcracking, in turn, can be understood as
the transition from one elastic equilibrium configuration to an-
other. Since the amount of damage increases during this transition,
it is a dissipative process, and its analysis requires a framework of
thermodynamics, as will be considered in Sec. 3.

In the framework of the theorem of minimum potential energy,
kinematically admissible displacement fields are considered, i.e.,
continuous and piecewise continuously differentiable displace-
ment fields satisfying the displacement boundary conditions
�herein Eq. �5��. Such displacements fields are used to calculate
the elastic energy stored in the considered structure. The theorem
states, that the elastic energy referring to the displacement solu-
tion of the underlying elasticity problem is a lower bound for the
elastic energy referring to any other kinematically admissible dis-
placement field, see, e.g., Ref. �22�. Commonly, classes of kine-
matically admissible displacement fields are considered, which are
characterized by one or more optimization variables. Calculating
the elastic energy, and minimizing it with respect to the optimiza-
tion variable�s�, yields an “optimal” kinematically admissible dis-
placement field.
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T cr
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0 [[ξcr
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β = 1/4
β = 1/2
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t

[[ξn]] = [[ξcr
n ]]/3

Fig. 2 Evaluation of elastodamaging cohesive zone law „4…, for
different values of the power law exponent �, and for maxt��n�
= ��n

cr� /3

n

�

x3

x2

RVE

∂Ω : ξ(x) = E · x

e3

2(a + α) x1

Fig. 3 Two-dimensional illustration of a three-dimensional
representative volume element comprising an elastic matrix
and parallel cohesive microcracks of identical size and
orientation
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Fig. 4 Microcrack comprising an annulus-shaped cohesive
zone
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Herein we consider the class of kinematically admissible dis-
placement fields analyzed in Sec. 5 of Ref. �10�, introducing the
size of the cohesive zone as an optimization variable. This class of
displacement fields is equal to the displacement solution of a fic-
titious RVE �subjected to the boundary conditions �5��, which
comprises an elastic matrix and a dilute distribution of N sharp
penny-shaped parallel �n=e3� microcracks per unit volume, with
radius a+�, but without cohesive tractions. The macroscopic stiff-
ness estimate of such an RVE reads as �23,24�

Chom
dil = Cm : 	I −

4�

3
N�a + ��3T
 �7�

In Eq. �7�, Cm is the isotropic elastic stiffness tensor of the matrix,
I is the symmetric fourth-order unity tensor, and the fourth-order
tensor T is defined as

T = lim
	→0

	�I − Sc
m�	��−1 �8�

In Eq. �8�, 	 is the crack aspect ratio �see also Fig. 4�, and Sc
m is

Eshelby’s tensor. The nonvanishing components of T read as
�23,24�

T3311 = T3322 =
4
m�1 − 
m�
�1 − 2
m��

, T3333 =
4�1 − 
m�2

�1 − 2
m��
,

T1313 = T2323 =
2�1 − 
m�
�2 − 
m��

�9�

with the symmetries Tijkl=Tjikl=Tijlk. 
m denotes Poisson’s ratio
of the matrix. The crack opening displacements related to Chom

dil

represent the kinematically admissible displacement discontinui-
ties and read as

��n� = 2���a + ��2 − r2 �10�

where � is a macroscopic loading parameter defined as

� = E33T3333 + 2E�atT3311 �11�

Remarkably, Eq. �10� is identical to the classical solution for the
crack opening displacement of a single penny-shaped crack em-
bedded in an infinite, elastic, and isotropic matrix, derived in the
framework of linear elastic fracture mechanics, see, e.g., Ref.
�25�.

Calculating the potential energy of the real RVE, based on the
described class of kinematically admissible displacement fields,
and minimizing it with respect to the optimization variable “co-
hesive zone size,” delivers the following equation for the optimal
cohesive zone size �10�:

2Tn
cr

1 + �
	��n

cr� −
���n

cr� − 2���2a + ����1+�

��n
cr�� 
 −

Em�a + ���2�

2�1 − 
m
2 �

= 0

�12�

During crack propagation ��n� is equal to ��n
cr� at r=a. Accord-

ingly, Eq. �10� is specified for r=a, the resulting expression is set
equal to ��n

cr�, and the obtained equation is solved for the macro-
scopic loading parameter �, which yields

� =
��n

cr�

2��2a + ���
�13�

Inserting Eq. �13� into Eq. �12� and solving the resulting equation
for � yields optimal estimates of the cohesive zone size during
crack propagation as

� = a�� − 1 + ��2 + 1� �14�

with

� =
�Em��n

cr��1 + ��
32Tn

cra�1 − 
m
2 �

�15�

It is emphasized that the displacement discontinuity function �10�
and the cohesive zone size �Eq. �14�� converge toward exact so-
lutions in the limit �→
. For any positive value of � smaller than
infinity, ��n� and � are best possible estimates within the chosen
class of kinematically admissible displacement fields.

3 Dissipation of Elastodamaging Cohesive Microc-
racks

3.1 Thermodynamics Background. Herein, we deal with the
rate of energy, which is dissipated by cohesive cracks propagating
through the considered RVE. “Dissipation” denotes the transfor-
mation of mechanical energy into other types of energy, which
cannot be retransformed into efficient mechanical work. In the
classical framework of thermodynamics, the dissipation is equal
to the difference between the rate of work of the external forces
�i.e., the rate of work expended on the considered system by its
environment� and the rate of elastic internal energy, see, e.g., Ref.
�26�.

Let us first consider a system, which consists of the matrix of
the considered RVE only, i.e., we cut the matrix free from all the
cohesive cracks. Therefore, the action expended by the cohesive
cracks on the matrix, i.e., the cohesive tractions, become part of
the external forces of the investigated system. Since the behavior
of the matrix is considered herein as linear elastic, the rate of
work of the external forces �the ones acting on the boundary of the
RVE and the ones acting at the locations of the cut-away cohesive
zones� is always equal to the rate of elastic internal energy. Con-
sequently, no dissipation occurs in the matrix, but all dissipative
effects within the RVE obviously occur in the elastodamaging
cohesive cracks.

Let us now consider a system, which consists of one single
cohesive crack, cut free from the considered RVE. The external
forces of this system are given by the action of the matrix on the
crack, i.e., by the cohesive tractions Tn. Consequently, the rate of
work expended on the crack by its environment reads as

Ẇcrack
ex =�

r=a

a+�

Tn��̇n�2r�dr �16�

In Eq. �16�, ��̇n� denotes the rate of the displacement discontinuity.
The elastic internal energy stored in the cohesive zone can be
expressed as

Wcrack
in =�

r=a

a+�

�2r�dr �17�

where � is the elastic free energy per unit area of the cohesive
zone. The rate of Wcrack

in follows from deriving Eq. �17� with re-
spect to time

Ẇcrack
in =

d

dt�
r=a

a+�

�2r�dr =�
r=a

a+�

�̇2r�dr �18�

In Eq. �18�, the temporal derivatives of the integration bounds
yield vanishing contributions because during crack propagation
�=0, both at the inner and at the outer edge of the cohesive zone;
since at r=a :Tn=0, and since at r=a+� : ��n�=0. The rate of dis-
sipated energy of one cohesive crack is obtained from combining
Eqs. �16� and �18� as

Ḋ = Ẇcrack
ex − Ẇcrack

in =�
r=a

a+�

�Tn��̇n� − �̇�2r�dr �19�

Equation �19� is valid for any constitutive cohesive zone behavior.
Considering elastodamaging behavior, with the displacement dis-
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continuity as the only damage variable, the elastic free energy
density reads as

� = 1
2 ��n�K���n����n� �20�

Insertion of Eq. �20� into Eq. �19�, and considering Eq. �1�, yields
the rate of dissipation during propagation of one elastodamaging
cohesive crack as

Ḋcrack = −�
r=a

a+�
1

2
��n�K̇���n����n�2r�dr

= − ��
r=a

a+�

��n�2dK���n��
d��n�

��̇n�rdr �21�

After the second equal sign in Eq. �21�, it was taken into account
that K depends only on ��n�. Specifying Eq. �21� for Eq. �2�,
finally yields the rate of dissipation during propagation of one
microcrack with elastodamaging behavior, described by the power
law �2�

Ḋcrack = Tn
cr��

r=a

a+� �1 −
��n�
��n

cr��
�

��̇n�rdr

+ Tn
cr��

r=a

a+�

�
��n�
��n

cr��1 −
��n�
��n

cr��
�−1

��̇n�rdr �22�

In the sequel, Eq. �22� will be evaluated based on the optimal
kinematically admissible displacement discontinuity �Eq. �10��.
This will be done first for constant cohesive tractions ��=0�, see
Sec. 3.3, while in Sec. 3.4 we consider softening cohesive behav-
ior ���0�. It is recalled that estimation of the size of the cohesive
zone was done on the level of an RVE. Therefore information on
the RVE is also present in the subsequent single crack-related
analyses. For the sake of model validation, Eq. �22� will be also
evaluated for the exact shape of the displacement discontinuity,
which is available for the special case of constant cohesive trac-
tions ��=0�, see Sec. 4.2.

3.2 Displacement Discontinuity (Eq. (10)) and Its Rate
During Crack Propagation. The displacement discontinuity dur-
ing crack propagation is obtained by inserting � from Eq. �13�
into Eq. �10�

��n� = ��n
cr���a + ��2 − r2

�2a + ���
�23�

Equation �23� satisfies the condition for crack propagation, i.e.,
that ��n� is equal to ��n

cr� at the inner edge of the cohesive zone �at

r=a�. With regard to the time derivative ��̇n� appearing in Eq.
�22�, we introduce the �increasing� crack radius a as the parameter
for crack propagation, i.e., we set

��̇n� =
d��n�

da
ȧ = � ���n�

�a
+

���n�
��

d�

da
�ȧ �24�

In Eq. �24�, the fact that � depends, through Eqs. �14� and �15�, on
the crack radius, i.e., that the size of the cohesive zone changes
during crack propagation, was accounted for. The derivative of �
with respect to a follows from Eqs. �14� and �15� as

d�

da
=� 1

�2 + 1
− 1 �25�

The rate of displacement discontinuity during crack propagation is
obtained by inserting both Eqs. �23� and �25� into Eq. �24� as

��̇n� =
�r2 − a2��a + �� + a��2 + 1��a + ��2 − r2�

��a + ��2 − r2��2a + ��3�3��2 + 1
��n

cr�ȧ �26�

For clarity of the subsequent calculations, ��n� from Eq. �10� and

��̇n� from Eq. �26� are expressed as

��n� = ��n
cr����� and ��̇n� = ����

��n
cr�
a

ȧ �27�

with the dimensionless functions

���� =��1 + ��2 − �2

�2 + ���
and

�28�

���� =
��2 − 12��1 + �� + 1��2 + 1��1 + ��2 − �2�

��1 + ��2 − �2��2 + ��3�3��2 + 1

and the dimensionless parameters

� =
r

a
and � =

�

a
= � − 1 + ��2 + 1 �29�

3.3 Single Crack-Related Dissipation Considering Con-
stant Cohesive Tractions. Specifying the rate of dissipation �22�
for constant cohesive tractions, i.e., for �=0, and introducing the
dimensionless parameter � yield

Ḋcrack = Tn
cra2��

�=1

1+�

��̇n��d� + Tn
cra2� lim

�→0
	�

�=1

1+�

��1

−
��n�
��n

cr��
�−1 ��n�

��n
cr�

��̇n��d�
 �30�

Herein, we specify Eq. �30� for ��n� and ��̇n� from Eqs. �27� and
�28�. Integration of the first term into the right-hand side of Eq.

�22�, denoted subsequently as Ḋ1, is straightforward and yields

Ḋ1 = Tn
cr��n

cr�a�ȧ�
�=1

1+�

�����d� = Tn
cr��n

cr�a�ȧ�1 +
2�

3��2 + 1
�
�31�

Evaluation of the second term on the right-hand side of Eq. �22�,
denoted subsequently as Ḋ2, deserves special attention

Ḋ2 = Tn
cr��n

cr�a�ȧL with L = lim
�→0

	�
�=1

1+�

��1

− ������−1���������d�
 �32�

Though � tends to zero, L is not equal to zero since �1
−������−1��������� tends to infinity at �=1 �i.e., at r=a�. Based
on Lebesgue’s dominated convergence theorem, see, e.g., Ref.
�27�, it is shown in the Appendix that

L = 1 �33�

The rate of dissipated energy during propagation of a cohesive
crack with constant cohesive tractions follows from combining
Eqs. �31�–�33� as

Ḋcrack = Tn
cr��n

cr�2a�ȧ�1 +
�

3��2 + 1
� �34�

Dividing Eq. �34� by the rate of newly produced crack area
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Ȧ =
d

dt
�a2�� = 2a�ȧ �35�

yields the dissipated energy per newly produced crack area �com-
monly referred to as energy release rate�

Gcrack =
Ḋcrack

Ȧ
= Tn

cr��n
cr��1 +

�

3��2 + 1
� �36�

3.4 Single Crack-Related Dissipation Considering Cohe-
sive Softening Behavior. Herein, we consider the dissipation as-
sociated with propagation of a cohesive crack exhibiting softening
behavior in terms of decreasing cohesive tractions with increasing
displacement discontinuities. The rate of energy dissipated during
crack propagation follows from inserting both Eqs. �23� and �26�
into Eq. �22�, and from solving the integrals for values of �
greater than zero as

Ḋcrack =
Tn

cr��n
cr�

1 + �
2a�ȧ�1 +

�

��2 + 1

�2 + 5� + �2�
�2 + ���3 + ��� �37�

Remarkably, evaluation of Eq. �37� for the limit �→0 delivers the
result obtained in Eq. �34�, validating the derivations of Sec. 3.3
and of the Appendix. Dividing Eq. �37� by the rate of newly
produced crack area �Eq. �35��, yields the energy release rate
Gcrack as

Gcrack =
Ḋcrack

Ȧ
=

Tn
cr��n

cr�
1 + �

�1 +
�

��2 + 1

�2 + 5� + �2�
�2 + ���3 + ��� �38�

Equation �38� represents Gcrack as a function of the dimensionless
parameter �, see Eq. �15�, and of the three material constants Tn

cr,
��n

cr�, and �, characterizing the cohesive softening law, see Eqs.
�1� and �2�. In other words, Eq. �38� allows for the desired physi-
cal interpretation of the dissipative effects associated with mode I
propagation of elastodamaging cohesive microcracks.

If ��1, then the size of the cohesive zone is �i� almost constant
during crack propagation, and it is �ii� significantly smaller than
the crack radius, as follows from specification of Eq. �14� for �
�1:

� 
 a� =
�Em��n

cr��1 + ��
32Tn

cr�1 − 
m
2 �

� a �39�

In turn, Eq. �38� reveals that if ��1, the energy release rate
Gcrack
Tn

cr��n
cr� / �1+��. The latter expression is equal to area un-

der the related Tn-��n� diagram depicted in Fig. 1. This result is
consistent with the traditional energy approach of dissipation
based on the concept of critical �dissipative� energy release rate,
i.e., it justifies approaches in which the toughness is introduced as
the area under the softening curve, see, e.g., Ref. �16�.3

If ��” 1, then the size of the cohesive zone depends on the crack
radius �i.e., � evolves during crack propagation�, see Eqs. �14�
and �15�. In such cases, the energy release rate is larger than the
area under the related Tn-��n� diagram, see Eq. �38�.

3.5 Dissipation Within an RVE Comprising Many Propa-
gating Cohesive Microcracks. Considering that all cracks within
the RVE introduced in Sec. 2.2 are propagating, the rate of energy

dissipated within the RVE is equal to the rate of energy dissipated
per propagating crack, multiplied by the number of cracks propa-
gating through the RVE, i.e.,

ḊRVE = ḊcrackN� =
Tn

cr��n
cr�

1 + �
2a�ȧ�1 +

�

��2 + 1

�2 + 5� + �2�
�2 + ���3 + ���N�

�40�

In Eq. �40�, � denotes the volume of the RVE, and N is the

number of cracks per unit volume. ḊRVE can be calculated alter-
natively by a macroscopic reasoning: The rate of energy dissi-
pated within the RVE is equal to the difference between the rate of
work expended on the RVE by its environment �i.e., by the exter-
nal forces acting on the boundary of the RVE� and the rate of
elastic internal energy stored within the RVE �both in the matrix
and in the cohesive zones�. The related mathematical formulation
reads, by analogy to Eq. �21�, as

ḊRVE = ẆRVE
ex − ẆRVE

in = −
�

2
E:Ċhom:E �41�

In Eq. �41�, Ċhom is the rate of the homogenized macroscopic
stiffness tensor. Introducing again the �increasing� crack radius a
as the parameter for crack propagation, Eq. �41� reads as

ḊRVE = − ȧ
�

2
E:

d

da
�Chom

idil �:E with
d

da
=

�

�a
+

�

��

d�

da
�42�

In Eq. �42�, it was taken into account that we will estimate Chom
by Chom

idil , an improved dilute estimate, which accounts explicitly
for the cohesive zones. By setting Eq. �40� equal to Eq. �42�, Chom

idil

can be identified as

Chom
idil = Cm:	I −

4�

3
N�a + ��3�1 −

3�2�2 + ��2

2��2 + ���3 + ���1 + ��3�T

�43�

where ���� was defined in Eq. �29�. The improved stiffness esti-
mate �Eq. �43�� differs from the classical one �Eq. �7�� by the
second term in the parenthesis of Eq. �43�. This additional term
accounts for the cohesive zones. It decreases with increasing �,
and it decreases with decreasing �.

4 Model Validation
This section aims at validation of the model developments de-

scribed so far. In this context, it is emphasized that the displace-
ment discontinuity function �10� and the cohesive zone size �Eq.
�14��, which were the basis for all derivations presented up to this
point, do not represent exact solutions, but best possible estimates
within the chosen class of kinematically admissible displacement
fields, see Sec. 2.2. The exact shape of the displacement discon-
tinuity and the exact size of the cohesive zone are reported in the
open literature for the special case of constant cohesive tractions
��=0�, see Refs. �29,30�. Subsequently, these exact solutions will
be used to assess the predictive capabilities of the proposed
model, namely, by comparing model predictions specified for �
=0 with exact solutions. This comparison will comprise the fol-
lowing three quantities:

1. the size of the cohesive zone
2. the relationship between remote tensile stresses and the

opening of the cohesive crack at the inner edge of the cohe-
sive zone

3. the energy dissipated during propagation of a cohesive crack

Sections 4.1 and 4.2 contain model predictions and related ex-
act solutions, respectively. In Sec. 4.3, the comparison between
model predictions and exact solutions is made. Conclusions are
drawn in Sec. 5.

3To show that the energy released is equal to the area under the softening curve,
one can also use the J-integral concept, which goes back to the pioneering work of
Rice �28�. Employing this concept in the present context would involve integrals
leading around the cohesive zone. Hence, the J-integral approach would not allow for
direct identification of the source of dissipation. The aim of the submitted manu-
script, however, is to explain how dissipation occurs. This provided the motivation to
calculate the dissipation at the very domain where it occurs, namely, inside the
cohesive zone.
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4.1 Model Predictions for Constant Cohesive Tractions
„�=0…. The evolution of the cohesive zone size is considered in
the following comprehensive manner. We consider an RVE com-
prising many parallel microcracks of radius a, initially without
cohesive zones, and we deal with a monotonous increase in mac-
roscopic strains referring to macroscopic tensile loading. The re-
lated behavior of the cohesive zones is characterized by two
phases: �i� growth of the cohesive zones ahead of the stationary
�nonpropagating� cracks �as detailed below�, and �ii� the behavior
of fully grown cohesive zones during crack propagation. Notably,
up to this point we exclusively dealt with phase �ii�. As for the
description of phase �i�, we parametrize the growth of � with the
dimensionless parameter m� �0,1�, defined as

��n�r=a = m��n
cr� �44�

In Eq. �44�, ��n�r=a denotes the displacement discontinuity at the
inner edge of the cohesive zone �i.e., at r=a�. In the considered
context, m=0 corresponds to the “initial configuration,” i.e., to a
nonexistent cohesive zone, while m=1 corresponds to a “fully
grown” cohesive zone, in the sense that the displacement discon-
tinuity at the inner edge of the cohesive zone is equal to the
critical value ��n

cr�, see Eq. �44�. The macroscopic loading param-
eter � can be expressed as a function of parameter m, by specifi-
cation of Eq. �10� for r=a and by consideration of Eq. �44�

� =
m��n

cr�

2��2a + ���
�45�

The size of the cohesive zone with constant cohesive tractions,
expressed as a function of m, is obtained from specifying Eq. �12�
for �=0, for � from Eq. �45�, and from solving thereafter for �.
The result reads in dimensionless form as

�

a
= �m�� − 1 + ��m��2 + 1 �46�

When dealing with growth of the cohesive zones ahead of station-
ary �nonpropagating� cracks, � is constant, while � from Eq. �46�
and � from Eq. �45� can be interpreted as parameter forms, with m
as the parameter increasing from 0 up to 1, see the solid line in
Fig. 5 and Table 1. Reaching m=1 in the context of monotonous
macroscopic load increase corresponds to onset of crack propaga-
tion, i.e., a change from phase �i� to phase �ii�. Accordingly, the
crack radius a will start to increase, while at r=a �where a is at
any time the current value of the crack radius� the displacement
discontinuities of the cohesive zones remain equal to ��n

cr�. Hence,
when dealing with crack propagation, m is constant and equal to
1. In addition, � from Eq. �15�, � from Eq. �14�, and � from Eq.
�13� apply, and they can be interpreted as parameter forms, with
the increasing crack radius a as the parameter, see Table 1. Re-
markably, since the crack radius appears in the denominator in the
right-hand side of Eq. �15�, � decreases during crack propagation.
Consequently, the dimensionless cohesive zone size, � /a, de-
creases during crack propagation, see the solid line in Fig. 5.

The relationship between the remote tensile stresses and the
opening of the cohesive crack at the inner edge of the cohesive
zone is studied for isotropic remote tension

� = �m

1 �47�

where 1 denotes the second-order unity tensor. The corresponding
principal strain components read as

E33 = E�at =
�m


�1 − 2
m�
Em

�48�

Inserting Eq. �48� into Eq. �11� allows for expressing the macro-
scopic loading parameter � as a function of �m




� =
4�m


�1 − 
m
2 �

�Em
�49�

Insertion of Eqs. �49� and �46� into Eq. �45�, solving for �m

, and

dividing the resulting expression by Tn
cr yield the model proposed

relationship between �m

 /Tn

cr as a function of the dimensionless
parameter m�

�m



Tn
cr =

2�2�m��
��m�� + ��m��2 + 1

= 2�2�m�� − �2�m��3 + O���m��5�

�50�

�m

 increases in phase �i�, while it decreases in phase �ii�, see the

solid line in Fig. 6 and Table 1.
The energy release rate �Eq. �36�� is divided by Tn

cr��n
cr� to ob-

tain a dimensionless expression
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Fig. 5 Comparison of model prediction „Eq. „46…… with exact
solution „55…; size of the cohesive zone during its evolution and
during crack propagation, see Table 1

Table 1 Two phases of cohesive zone behavior encountered during monotonous load in-
crease in a RVE containing microcracks with initially nonexistent cohesive zones „�=0…

Phase �i�: growth of cohesive zone Phase �ii�: crack propagation

m =
��n�r=a

��n
cr�

Increasing from 0 to 1 Constant and equal to 1

Crack radius: a Constant and equal to initial value aini Increasing, starting from the initial value aini

� =
�Em��n

cr�
32Tn

cra�1 − 
m
2 �

Constant, with a=aini Decreasing with increasing a
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G =
Gcrack

Tn
cr��n

cr�
= 1 +

�

3��2 + 1
= 1 +

1

3
� + O��3� �51�

According to Eq. �51�, the single crack-related energy release rate
slightly decreases during crack propagation, see the solid line in
Fig. 7.

4.2 Exact Solutions for Constant Cohesive Tractions. Chen
and Keer �29� considered an elasticity problem comprising an
infinite linear elastic matrix containing one circular crack of ra-
dius a+�. The solid is subjected, at infinity, to the remote stresses
�Eq. �47��. In the annular region of the crack between r=a and
r=a+�, normal tractions Tn

cr are prescribed both on the lower and
on the upper crack surface. To ensure the stresses at the crack tip
to be finite, crack radius a, annular zone width �, remote mean
stress �m


, and prescribed normal tractions Tn
cr are related through

�29�

a

a + �
=�1 − ��m




Tn
cr�2

�52�

The separation of the crack faces in the annular zone reads as �29�

��n� = 2���a + ��2 − r2 −
8�1 − 
m

2 �
�

Tn
cr

Em
�

s=r

a+��s2 − a2

s2 − r2 ds,

a � r � a + � �53�

with � from Eq. �49�. The solution for the displacement disconti-
nuity at the inner edge of the annular zone follows from specifi-
cation of Eq. �53� for r=a as

��n�r=a =
8�1 − 
m

2 �
�Em

aTn
cr	1 −�1 − ��m




Tn
cr�2
 �54�

An expression for the annular zone width, which is directly com-
parable with Eq. �46�, is obtained from replacing the square root
expression in Eq. �54� by the left-hand side of Eq. �52�, from
replacing ��n�r=a in Eq. �54� by the right-hand side of Eq. �44�,
and from solving the resulting expression for � /a as

�

a
=

4�m��
1 − 4�m��

�55�

see the dashed line in Fig. 5. An expression, which is directly
comparable with Eq. �50�, is obtained from solving Eq. �54� for
�m


 /Tn
cr

�m



Tn
cr = 2�2�m���1 − 2�m��� = 2�2�m�� − 2�2�m��3 + O���m��5�

�56�
see the dashed line in Fig. 6.

An expression for the energy dissipated during stable propaga-
tion of a cohesive crack with elastodamaging cohesive behavior is
not available in the literature. Notably Chen and Keer �29� con-
sidered an elasticity problem in which the cohesive tractions were
prescribed as part of the boundary conditions of the matrix,
whereby nothing was said about the source for these tractions.
Herein, we interpret Chen and Keer’s cohesive tractions as the
result of an elastodamaging cohesive behavior defined in Eqs. �1�
and �2�, with �=0. To calculate the related rate of dissipation
associated with crack propagation, we subsequently specify the
exact displacement discontinuity function �53� for crack propaga-
tion, we calculate its rate, and we insert both expressions into Eq.
�30�.

The shape of the displacement discontinuity in the cohesive
zone during propagation of a crack with constant cohesive trac-
tions follows from specification of Eq. �53� for r=a, from setting
the resulting expression equal to ��n

cr�, from solving the obtained
equation for the macroscopic loading parameter �, and from re-
inserting � into Eq. �53� as

��n� = ��n
cr�	�1 +

8�1 − 
m
2 �Tn

cr�

�Em��n
cr�

���a + ��2 − r2

��2a + ��

−
8�1 − 
m

2 �Tn
cr

�Em��n
cr� �

s=r

a+��s2 − a2

s2 − r2 ds
 �57�

The rate of displacement discontinuity is obtained by inserting Eq.
�57� into Eq. �24�. In the present context of the exact solution, the
derivative of � with respect to a is obtained under consideration
of Eq. �15� from Eq. �55� as

d�

da
= −

�2

a2 �58�

In order to calculate the rate of dissipation, ��n� and ��̇n� are ex-
pressed as defined in Eq. �27�. In the present context of the exact
solution, the dimensionless functions ���� and ���� read as

���� = �1 +
�

4�
���1 + ��2 − �2

��2 + ��
−

1

4�
�

�=�

1+�� �2 − 1

�2 − �2d�

�59�
and
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Fig. 6 Comparison of model prediction „Eq. „50…… with exact
solution „56…: relationship between remote stresses and crack
opening at the inner edge of the cohesive zone „consider: m
= ��n�r=a / ��n

cr�…, see Table 1
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Fig. 7 Comparison of model prediction „Eq. „51…… with exact
solution „66…: dimensionless energy release rate during crack
propagation, see Table 1; to render the curves distinguishable,
the ordinate shows the interval †0.75,1.10‡ only
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���� =
�1 + ��2 + �1 − � − �2��2 − ��1 + ���3 + � − �2��4��−1

�2 + ����1 + ��2 − 1��1 + ��2 − �2

+
1

4�
�

�=�

1+�
1

��2 − 1��2 − �2
d� �60�

Now, we specify the rate of dissipation �Eq. �30�� for ��n� and ��̇n�
from Eqs. �27�, �59�, and �60�. Integration of the first term on the

right-hand side of Eq. �30�, denoted as Ḋ1, is done under consid-
eration of the elliptic integral

�
�=1

1+� ��
�=�

1+�
1

��2 − 1��2 − �2
d���d� = � �61�

and yields

Ḋ1 = Tn
cr��n

cr�a�ȧ�
�=1

1+�

�����d� = Tn
cr��n

cr�a�ȧ�1 +
4��1 − 8��
3�1 + 4��2 �

�62�
Again, evaluation of the second term on the right-hand side of Eq.

�22�, denoted as Ḋ2, deserves special attention

Ḋ2 = Tn
cr��n

cr�a�ȧL with L = lim
�→0

	�
�=1

1+�

��1

− ������−1���������d�
 �63�

Though � tends to zero, L is not equal to zero since again �1
−������−1��������� tends to infinity at �=1 �i.e., at r=a�. Re-
markably, the exact expressions for ���� and ���� from Eqs. �59�
and �60� differ from the optimal kinematically admissible expres-
sions �Eq. �28��. Nonetheless, all qualitative and quantitative
properties referred to in the Appendix are the same. In other
words, although the exact displacement discontinuity and its rate
differ from the related functions in Sec. 3, all descriptions in the
Appendix are valid in both cases, and hence, the same result is
obtained, namely

L = 1 �64�

The exact rate of dissipated energy during propagation of an elas-
todamaging cohesive crack with constant cohesive tractions fol-
lows from combining Eqs. �62�–�64� as

Ḋcrack = Tn
cr��n

cr�2a�ȧ�1 +
2��1 − 8��
3�1 + 4��2 � �65�

Dividing Eq. �65� by the rate of newly produced crack area �Eq.
�35�� and by Tn

cr��n
cr� yields a dimensionless expression for the

energy release rate, which is directly comparable with Eq. �51�, as

G =
Ḋcrack

ȦTn
cr��n

cr�
= 1 +

2��1 − 8��
3�1 + 4��2 = 1 +

2

3
� + O��3� �66�

4.3 Comparison of Model Predictions With Exact
Solutions. Model predicted cohesive zone sizes significantly un-
derestimate the exact solutions in case of constant cohesive trac-
tions. The related estimates �Eqs. �14� and �46�� cannot be recom-
mended for values of � smaller than 3, as was already concluded
in Ref. �10�. If better estimates of the cohesive zone size are
required, a more sophisticated class of kinematically admissible
displacement fields and related estimates can be found in Ref.
�10�.

Model predictions regarding the relationship between remote
tensile stresses and the opening of the cohesive crack at the inner
edge of the cohesive zone are satisfactory. The model prediction

�Eq. �50�� reproduces the exact solution �Eq. �56�� quite well,
since the leading terms of the power series expansions in Eqs. �50�
and �56� are identical. In more detail, model predictions differ
from exact solutions by higher-order terms only, e.g., by less than
1.81% relative error if

� � 0.034 �67�
i.e., if

max��m

�

Tn
cr � 0.5 �68�

In Eq. �68�, max��m

� denotes the remote tensile stress at onset of

microcrack propagation. Since the tensile microstrength Tn
cr of

brittle materials, such as concrete or rock, is expected to be sig-
nificantly larger �e.g., more than twice as large� than bearable
macroscopic tensile stresses �see, e.g., Ref. �31��, �Eq. �68��, and
hence, Eq. �67� are also regarded as being fulfilled.

Model predictions regarding the energy release rate during
propagation of cracks with constant cohesive tractions are also
satisfactory. The model prediction �Eq. �51�� reproduces the exact
solution �Eq. �66�� quite well, since again the leading terms of the
power series expansions in Eqs. �51� and �66� are identical. Model
predictions differs from the exact solutions by higher-order terms
only, e.g., by less than 0.49% relative error if Eq. �67� is satisfied,
i.e., if the tensile microstrength is at least twice as large as the
remote tensile stresses at onset of crack propagation.

5 Discussion, Conclusions, and Outlook
This paper dealt with the dissipation associated with quasistatic

microcracking of brittle materials exhibiting softening behavior.
For this purpose the elastodamaging cohesive zone model of
Pichler and Dormieux �10� was used. From the satisfactory model
performance illustrated in Fig. 6, it can be concluded that the
proposed approach allows for reliable prediction of the macro-
scopic load intensity, at which the crack opening at the inner edge
of the cohesive zone becomes equal to the critical separation ��n

cr�.
Since this is the criterion for onset of crack propagation, Fig. 6
highlights that the proposed approach allows for reliable predic-
tion of onset of microcrack propagation. The again satisfactory
model performance illustrated in Fig. 7, in turn, highlights that the
proposed approach allows for reliable prediction of the dissipation
during microcrack propagation.

Remarkably, the model predictions were derived based on a
class of kinematically admissible displacement fields correspond-
ing to microcracks without cohesive stresses �characterized by �
→
�. This means that in the limit �→
, all model predictions
converge toward exact solutions. Hence, the reliability of model
predictions is expected to increase with increasing power law ex-
ponent �. In this context, the accuracy of model predictions illus-
trated in Figs. 6 and 7 is remarkable, since these illustrations refer
to constant cohesive tractions ��=0�. Hence, one may conclude
that model predictions for values of ��0 are even more reliable
than the already satisfactory results of Figs. 6 and 7. Accordingly,
both the energy release rate �Eq. �36�� and the improved stiffness
estimate �Eq. �43�� can be viewed as being corroborated for any
power law exponent from zero to infinity.

For materials whose microscopic tensile strength is at least
more than twice as large as the macroscopic tensile strength, it
was shown that the dimensionless parameter �, defined in Eq.
�15�, is very small compared with 1. For ��1, the second term in
the parenthesis of Eq. �43� is very small compared with 1. This
way, the improved stiffness estimate �Eq. �43�� degenerates to the
classical one �Eq. �7��, which indicates that the cohesive zones do
not significantly contribute to the macroscopic stiffness. This re-
sult justifies the use of stiffness estimates based on classical non-
cohesive cracks, see Refs. �1–3� and the references therein.

Results obtained for the energy release rate during propagation
of a cohesive crack are of interest both for practical engineers, as
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well as for the scientific community. It was shown that in a wide
class of practical applications, the energy release rate during crack
propagation is—up to terms of higher order—indeed equal to the
area under the Tn-��n� diagram, commonly referred to as the soft-
ening curve. This is remarkable, since throughout this paper, we
neither restricted our considerations to cases where the cohesive
zone is small, as compared with the crack radius, nor did we
consider that the cohesive zone size is constant during crack
propagation, which are both assumptions frequently used in the
pertinent literature. This way, the obtained results justify ap-
proaches relying on the classical concept of constant �dissipative�
energy release rate. This concept is frequently implemented into
finite element codes used in the engineering practice, introducing
the toughness of the material as the area under the softening
curve, independent of the size of the cohesive zone. With regard
to the ongoing scientific discussion on how to describe microc-
racking in the framework of homogenization techniques, the pre-
sented results provide a strong argument for combined fracture-
micromechanics models, such as those proposed in Refs. �4,5�,
respectively. This opens the door for further enhancing the micro-
mechanical description of microcracking processes in media such
as cementitious materials and rock.

Notably, the proposed model is based on three material con-
stants: the tensile microstrength Tn

cr, the displacement discontinu-
ity at which no forces can be transmitted across the cohesive zone
anymore ��n

cr�, and the power law exponent �, see Eq. �2�. Their
identification for a specific brittle softening material remains a
challenging task. Up to the knowledge of the authors, these are
nowadays, unfortunately, inaccessible by state-of-the-art material
testing. Hence, the material constants introduced herein need to be
back analyzed from macroscopic material experiments. In this
context, transmission electron microscopy �TEM� using an atomic
force microscope �AFM� is a promising experimental tool, which
might soon be able to provide access to the material constants.
Alternatively, recent results of molecular dynamics simulations,
such as, e.g., Ref. �18�, raise the hope that the aforementioned
material constants will soon be accessible for a wide class of
brittle materials, including cementitious materials and rock.

While nanomechanical simulations will hopefully provide soon
the material constants of the cohesive microcracks, this paper con-
tains first steps toward a simple and computationally cheap real-
ization of the successive upscaling step, i.e., the link from the
microscale �the level of one cohesive microcrack� to the macros-
cale �the level of a representative volume element containing
many cohesive microcracks�. In case of parallel noninteracting
cohesive cracks, this second scale transition is provided by the
derived improved dilute estimate. From a scientific viewpoint, it
would be desirable to extend both the estimation of the cohesive
zone size and the estimation of the macroscopic stiffness toward
consideration of interacting cohesive microcracks. This, however,
was not the topic of this paper, but it provides motivation for
future research.
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Nomenclature

List of Symbols and Abbreviations
a � crack radius
ȧ � rate of a

Ȧ � rate of crack area
c � half opening at the center of a microcrack

�Fig. 4�

Cm � elastic isotropic stiffness tensor of the matrix
�fourth-order tensor�

Chom � homogenized elastic stiffness of the RVE
�fourth-order tensor�

Ċhom � rate of Chom
Chom

dil � dilute estimate of Chom
Chom

idil � improved dilute estimate of Chom

Ḋcrack � rate of energy dissipated due to propagation of
one microcrack

Ḋ1 � first term on the right-hand side of Eq. �30�
Ḋ2 � second term on the right-hand side of Eq. �30�

ḊRVE � rate of dissipation of an RVE with many
propagating microcracks

ei � base vector of Cartesian coordinate frame
Em � Young’s modulus of the isotropic matrix
E � macroscopic strains of the RVE �second-order

tensor�
E33 � normal strain component of E, see Eq. �6�
E�at � normal strain component of E, see Eq. �6�

F � dimensionless function, see Eq. �A4�
Gcrack � energy release rate during propagation of one

crack
G � dimensionless expression of Gcrack, see Eqs.

�51� and �66�, respectively
1 � second-order unity tensor
I � symmetric fourth-order unity tensor

i, j, k, and l � indices: i , j ,k , l� �1,2 ,3�
K���n�� � elastodamaging stiffness of cohesive zone; ��n�

=damage variable

K̇���n�� � rate of K���n��
L � dimensionless function, see Eqs. �32� and �63�
m � dimensionless crack opening at the inner edge

of the cohesive zone, see Eq. �44�
N � number of cracks per unit volume of the RVE
n � unit normal vector
r � radial coordinate of local �crack related� base

frame �Fig. 4�
Sc

m � Eshelby tensor �fourth-order tensor�
s � integration parameter
t � time

T � fourth-order tensor defined in Eq. �8�
Tijkl � components of T

Tn � cohesive tensile normal tractions
Tn

cr � tensile microstrength, maximum value of Tn
x � position vector

Ẇcrack
ex � rate of work expended on a crack by its

environment
Wcrack

in � elastic internal energy stored in a cohesive
crack

Ẇcrack
in

� rate of Wcrack
in

ẆRVE
ex � rate of work expended on the RVE by its

environment

ẆRVE
in � rate of elastic internal energy stored in the

RVE
� � cohesive zone size �=width of annular cohesive

zone�
� � dimensionless material constant �power law

exponent related to the shape of the Tn-��n�
diagram, see Eq. �2��

� � dimensionless cohesive zone size, see Eq. �29�
� � dimensionless function related to ��̇n�, see Eq.

�27�
� � macroscopic loading parameter defined in Eq.

�11�
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m � Poisson’s ratio of the isotropic matrix
� � dimensionless function related to ��n�, see Eq.

�27�
� � displacement vector prescribed at the boundary

of the RVE
��n� � normal displacement discontinuity

maxt��n� � maximum normal displacement discontinuity
experienced by a material point belonging to a
cohesive zone=damage variable in Eq. �4�

��̇n� � rate of ��n�
��n�r=a � ��n� at r=a �i.e., at the inner edge of the cohe-

sive zone�
��n

cr� � value of ��n� at which all bonds between ini-
tially adjacent material points are broken such
that no tensile forces can be transmitted across
the cohesive zone anymore

� � dimensionless radial coordinate, see Eq. �29�
� � macroscopic stresses of the RVE �second-order

tensor�
�m


 � normal stress components of �
� � dimensionless integration parameter

� � dimensionless function, see Eq. �70�
� � dimensionless parameter composed of material

constants, see Eq. �15�
� � dimensionless function, see Eq. �70�
� � elastic free energy per unit area of the cohe-

sive zone

�̇ � rate of �
	 � crack aspect ratio, see Fig. 4
� � volume of the RVE

�� � surface of the RVE

Appendix: Evaluation of the Function L Based on Leb-
esgue’s Dominated Convergence Theorem

This appendix deals with evaluation of the dimensionless func-
tion

L = lim
�→0

	�
�=1

1+�

��1 − ������−1���������d�
 � 0 �A1�

The structure of the integrand in Eq. �A1� provides the motivation
to introduce the following two dimensionless functions:

���� = 1 − ���� and ���� = ��������� �A2�
such that L reads as

L = lim
�→0
�

�=1

1+�

���−1�d� �A3�

The integrand in Eq. �A3� is further modified such that partial
integration can be simply applied. For this purpose, it is useful to
introduce the function

F��,�� = �� �A4�

Deriving F partially with respect to � �partial derivatives with
respect to � are indicated subsequently by a prime�, and re-
arranging terms yields ���−1=F� /��. Inserting this relationship
into Eq. �A3� and integrating by parts yield

L = lim
�→0

�
�=1

1+�

F�
�

��
d� = lim

�→0
	��� �

��
�

1

1+�

+�
�=1

1+�

���−
�

��
��

d�
 �A5�

Accounting in Eq. �A5� for

��1� = 0 and ��1 + �� = 1 �A6�
yields

L = lim
�→0

1�� �

��
�1+�

+ lim
�→0
�

�=1

1+�

���−
�

��
��

d� �A7�

For further simplification of Eq. �A7�, it would be desirable to
exchange the sequence of integration and taking the limit �→0.
For this purpose, characteristics of the integrand are analyzed in
more detail. Notably

0 � �� � 1 for all � � 0 and for 1 � � � 1 + �

�A8�
For the functions of interest herein, it can be shown numerically
that

0 � �−
�

��
��

for 1 � � � 1 + � �A9�

From Eqs. �A8� and �A9� follows that

0 � ���−
�

��
��

� �−
�

��
��

for all � � 0 and for 1 � �

� 1 + � �A10�

In other words, the integrand in Eq. �A7�, ���−� /����, is domi-
nated by �−� /����, in the entire cohesive zone �i.e., in the entire
interval of integration� and for any � greater or equal than zero.
Since the latter term is integrable, i.e., since

�
�=1

1+� �−
�

��
��

d� = −� �

��
�

1

1+�

= 0 − �− 1� = 1 � 
 �A11�

Lebesgue’s dominated convergence theorem applies to the second
term on the right-hand side of Eq. �A7�, permitting us to exchange
the sequence of integration and taking the limit �→0, see, e.g.,
Ref. �27�

L = � �

��
�1+�

+�
�=1

1+�

lim
�→0

���−
�

��
��

d� �A12�

Considering Eq. �A8� it follows that lim
�→0

��=1. Inserting this

result into Eq. �A12� finally yields

L = � �

��
�1+�

+�
�=1

1+� �−
�

��
��

d� = � �

��
�1+�

− � �

��
�

1

1+�

= −� �

��
�

1
= lim

�→0

�

��
= 1 �A13�
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Dynamic Stability Analysis of
Stiffened Shell Panels With
Cutouts
A finite element dynamic instability analysis of stiffened shell panels with cutout sub-
jected to uniform in-plane harmonic edge loading along the two opposite edges is pre-
sented in this paper. The eight-noded isoparametric degenerated shell element and a
compatible three-noded curved beam element are used to model the shell panels and the
stiffeners, respectively. As the usual formulation of degenerated beam element is found to
overestimate the torsional rigidity, an attempt has been made to reformulate it in an
efficient manner. Moreover the new formulation for the beam element requires five de-
grees of freedom per node as that of shell element. Bolotin method is applied to analyze
the dynamic instability regions. Numerical results of convergence studies are presented
and comparison is made with the published results from literature. The effects of various
parameters such as shell geometry, radius of curvature, cutout size, stiffening scheme,
and dynamic load factors are considered in dynamic instability analysis of stiffened shell
panels with cutout. The free vibration and static stability (buckling) results are also
presented. With the consideration of radius of curvatures the panels reduce from deep
shell case to shallow shell case and finally become flat plate. �DOI: 10.1115/1.3086595�

Keywords: finite element method, perforated stiffened shell panels, degenerated curved
beam element, degenerated shell element, deep shell, shallow shell, cutouts, dynamic
instability and in-plane exciting load

1 Introduction
The use of shell panels is common in many activities of aero-

space, mechanical, civil, and marine engineering structures. The
panels are often attached with a suitable stiffened structural form
to enhance the specific strength/stiffness to weight ratio of the
structure. The geometrical discontinuities such as cutouts are in-
evitable in these structures to facilitate different purposes. The
stress distribution in these structures becomes nonuniform due to
the presence of stiffeners and cutouts. During the service period
these structures often experience the exciting in-plane forces. Due
to these pulsating in-plane forces the stiffened panels may lead to
the condition of dynamic instability where these structures vibrate
in the transverse direction and the amplitude of vibration increases
without bound. This condition is also called parametric resonance.
This phenomenon is entirely different from the usual resonance of
forced vibration. In forced vibration when the frequency of the
transverse forcing system matches with the natural frequency of
the structure, resonance occurs. Thus the resonance phenomenon
in forced vibration problem is relatively simple since the structure
loses stability at constant frequencies of the transverse loads. On
the other hand the instability in case of parametric resonance oc-
curs over a range of frequencies of the in-plane force rather than a
single value. Again parametric resonance of a structure may occur
at load level much less than the static buckling load while the
static instability of the structure sets in at the static buckling load
values. Thus a structural component designed to withstand static
buckling load may easily fail in an environment having periodic
in-plane loading. So a designer is ought to consider the parametric
resonance aspect while dealing a structure subjected to dynamic
loading atmosphere.

Many researchers in the past have undertaken the work on dy-
namic instability of structures. Bolotin �1� presented the general
theory of dynamic stability of various elastic systems and dis-
cussed the peculiarities of the phenomena of instability. Extensive
bibliographies of earlier works on these problems are given in
review papers of Evan-Iwanowski �2�, Ibrahim �3�, and Simitses
�4�. Hutt and Salam �5� first used the finite element method for the
dynamic instability analysis of plates subjected to uniform load-
ing. Most of the investigators �6–9� studied the dynamic instabil-
ity behavior of closed cylindrical shell with a simply supported
boundary condition using an analytical approach. The dynamic
instability of conical shell was studied by Ng et al. �10� using
generalized differential quadrature method. However, the studies
of dynamic instability for shell panels are few in literature. Sahu
and Datta �11� studied the dynamic instability of doubly curved
panels with nonuniform edge loadings. The dynamic stability of
uniaxially loaded cylindrical panels with transverse shear effect
was studied by Ng et al. �12�. However, for the stiffened structure,
Troitsky �13� extensively reviewed the literature pertaining to
rectangular stiffened plates for static, dynamic, and stability
analyses, which are based on orthotropic plate idealization. Stud-
ies on free vibration of stiffened plates and shells are available in
literature �14–20�. Timoshenko and Gere �21� presented numerical
tables for buckling load of rectangular plates stiffened by longitu-
dinal and transverse ribs. The dynamic stability analyses of stiff-
ened plates and shells are also very few in literature. Thomas and
Abbas �22� presented the vibration characteristics and dynamic
stability of stiffened plates. The parametric resonance of stiffened
rectangular plates is investigated by Duffield and Willems �23�.
Merrit and Willems �24� investigated the dynamic instability be-
havior for skew stiffened plates. The dynamic stability of radially
stiffened annular plates with radial stiffener subjected to in-plane
force is investigated by Mermertas and Belek �25�. Liao and
Cheng �26� gave some results for dynamic instability of stiffened
composite plates and shells with uniform in-plane forces. Shrivas-
tava et al. �27,28� investigated the dynamic instability of isotropic
stiffened plates with uniform and nonuniform edge loadings. For
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stiffened/unstiffened structures with cutout the available literature
regarding vibration, buckling, and dynamic instability analyses is
relatively few. Sahu and Datta �29� investigated the effect of dy-
namic instability characteristics on doubly curved panels with
opening. Srivastava et al. �30� studied the effect of square cutouts
and stiffening scheme on dynamic instability of stiffened plates
using finite element method. The earlier contributions do not
cover all aspects of dynamic instability behavior of stiffened shell
panels with cutout. The present work gives a contribution to study
the dynamic instability behavior of the stiffened shell panels with
cutout, but experimental works in large scale are still to be per-
formed to understand the phenomena completely.

In order to model a shell panel without any significant approxi-
mation related to the representation of arbitrary shell geometry,
structural deformation, and other associated aspects, the isopara-
metric 3D degenerated shell element �31,32� having eight nodes is
used. For the stiffeners, a compatible three-noded isoparametric
curved beam element is used. The beam element is always placed
along the edge of shell elements and this is intentionally not
placed within the shell element in order to avoid the problem of
stress jump within the shell element. The basic concept underlying
in the formulation of degenerated shell element �31� has been
extended to derive beam/stiffener elements having any arbitrary
curve geometry suitable for use in two- or three-dimensional
problems �33,34�. Unfortunately the 3D degenerated beam ele-
ment based on the above formulation �33,34� has some problem in
torsional mode since it overestimates torsonal rigidity �34�. The
problem becomes more severe in case of stiffeners having a nar-
row cross section like blade stiffener. Keeping this aspect in view,
the stiffener element is reformulated where the above mentioned
problem has been eliminated by using torsion correction factor. In
order to achieve that the stiffener bending in the plane of the shell
surface is neglected. This should not affect the solution accuracy
since deformation of the stiffener in that plane will be very small
due to high in-plane rigidity of the shell skin. Moreover, the new
formulation has the advantage that it requires five degrees of free-
dom per node while it is six in case of existing formulation
�33,34�. Actually the stiffener element will directly share the five
nodal unknowns of the shell element.

In the present study the dynamic instability analyses are carried
out for different types of stiffened shell panels such as flat plate,
cylindrical shell panel, spherical shell panel, and parabolic hyper-
boloid shell panel with different cutout sizes at the center. The
effects of various parameters such as shell geometry, radius of
curvature, cutout size, stiffening scheme, and dynamic load fac-
tors are considered in dynamic instability analysis of stiffened
shell panels with cutout. Both deep and shallow shell panels are
considered in the present investigation.

2 Theory and Formulation
It has been mentioned in Sec. 1 that the stiffened panel structure

is modeled by finite element technique. In order to have a better
representation, the shell skin and stiffeners are modeled as
discrete/separate elements. The formulation of these elements is
presented below.

2.1 Shell Element. The formulation of the shell element is
based on the basic concept of Ahmad �31�, where the three-
dimensional solid element used to model the shell is degenerated
with the help of certain extractions obtained from the consider-
ation that one of the dimensions across the shell thickness is suf-
ficiently small compared with other dimensions �Fig. 1�. The de-
tailed derivation of this element is available in literature �31,32�.

2.1.1 Elastic Stiffness Matrix. The elastic stiffness matrix of
an element can be derived easily and it is expressed as

�ke� =� �B�T�D���B�dxdydz =� �B�T�D���B��J�d�d�d� �1�

where �J� is the determinant of the Jacobian matrix �J�.

2.1.2 Mass Matrix. The consistent mass matrix has been
adopted in the present study. Following the usual techniques, it
can be derived and expressed as

�me� =� ��ND�T�ND�dxdydz =� ��ND�T�ND��J�d�d�d� �2�

where � is the material density.

2.1.3 Geometric Stiffness Matrix. The geometric stiffness ma-
trix of the element is expressed as

�kg� =� �BG�T����BG�dv =� �BG�T����BG��J�d�d�d�

where

��� = ���1� �0� �0�
�0� ��1� �0�
�0� �0� ��1�

� �3�

The submatrix ��1� within the initial stress matrix ��� in the
above equation is

��1� = ��x� �xy� �xz�

�xy� �y� �yz�

�xz� �yz� 0
� �4�

2.2 Stiffener Element. The derivation of the stiffener element
is based on the basic concept used to derive the shell element. In
this case the stiffener element modeled with three-dimensional
solid element is degenerated with the help of certain extractions
obtained from the consideration that the dimension across the
stiffener depth as well as breadth is small compared with that
along the length. The stiffener element follows an edge of a shell
element where the parameters of three nodes lying on that shell
element edge are used to express the geometry and deformation of
the stiffener utilizing compatibility between shell and stiffeners. It
helps to eliminate the involvement of additional degrees of free-
dom for the modeling of stiffeners. The stiffener element having
any arbitrary curved geometry is mapped into a regular domain in
�-�-� coordinate system where all these coordinates vary from �1
to +1. Again � is taken along the stiffener axis while � and � are
taken along the width and depth directions, respectively. It has
been found that the vectors v̄1i, v̄2i, and v̄3i are quite useful for the
representation of geometry and deformation of the shell element.
For the stiffener element a similar set of vectors v̄1i

s , v̄2i
s , and v̄3i

s is
used and these may be obtained from those of the shell elements
�v̄1i, v̄2i, and v̄3i� as

Fig. 1 Eight-noded quadrilateral degenerated shell element
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v̄1
s = v̄1 cos 	s + v̄2 sin 	s, v̄2

s = − v̄1 sin 	s

+ v̄2 cos 	s, and v̄3
s = v̄3 �5�

where �v̄1i
s − v̄2i

s � is oriented at an angle of 	s with respect to �v̄1i

− v̄2i� and v̄1i
s follows the stiffener axis.

With these vectors, the coordinate at any point within the stiff-
ener may be expressed in terms of coordinates �xi ,yi ,zi� of those
three nodes of the corresponding shell element edge as

	x

y

z

 = �

i=1

3

Nsi	xi

yi

zi

 + �

i=1

3

Nsi� �ds

2
+ e
	 l3i

s

m3i
s

n3i
s 
 + �

i=1

3

Nsi��bs

2




	 l2i
s

m2i
s

n2i
s 
 �6�

where bs is stiffener width, ds is its depth, and e is the eccentricity
�distance of the stiffener axis from the shell midsurface�. The
expressions of the quadratic shape functions Nsi along � are as
follows:

Ns1 = ��� − 1�/2, Ns2 = 1 − �2, Ns3 = ��� + 1�/2 �7�
Now considering the deformation of the stiffener element, the

present formulation differs from the usual one �33,34� where six
degrees of freedom are generally taken to represent the biaxial
bending apart from torsion and axial deformations. In the present
study the bending of the stiffener in the tangential plane of the
shell is not considered. This has helped to eliminate the involve-
ment of the sixth degrees of freedom 	z like that of a shell ele-
ment. Moreover the usual formulation �33,34� overestimates the
torsional rigidity and it cannot be corrected simply with some
correction factor since it got mixed with other terms. The present
formulation facilitates to treat it nicely where a torsion correction
factor is introduced. Actually this is the primary object for the
reformulation of the stiffener element. Based on this the displace-
ment components at any point within the stiffener may be ex-
pressed as

	u

v

w

 = �

i=1

3

Nsi�Tvi�	ui

vi

wi

 − �

i=1

3

Nsi� �ds

2
+ e
� l1i l2i

m1i m2i

n1i n2i
��	xi

	yi
�

= �NDs� ��s� �8�

where ��s�= �u1 v1 w1 	x1 	y1 u2 v2 . . . 	y3�T and the matrix
�Tvi� is used to make the component of translational displacement
along v̄2i

s at shell midplane zero since the bending of the stiffener
in the tangential plane of the shell is not considered. Its effect
should be insignificant since bending deformation in this mode
will be very small due to high in-plane rigidity of the shell skin.
Moreover the flexural rigidity of stiffener in this mode is usually
found to be small.

The matrix �Tvi� used in the above equation may be expressed
with the help of v̄1i

s and v̄2i
s as

�Tvi� = � l1i
s 0 l3i

s

m1i
s 0 m3i

s

n1i
s 0 n3i

s ��l1i
s m1i

s n1i
s

l2i
s m2i

s n2i
s

l3i
s m3i

s n3i
s � �9�

Similar to shell element, the stress and strain components at any
point within the stiffener element are taken in a local axis system
�x�-y�-z�� corresponding to v̄1i

s , v̄2i
s , and v̄3i

s . The relationship be-
tween them may be expressed as

	 �x�

�x�z�

�x�y�

 = �Q̄1m 0 0

0 �sQ̄5m 0

0 0 �tQ̄6m

�	 
x�

�x�z�

�x�y�

 or ���� = �Ds���
��

�10�

where �s is the shear correction factor, which is taken as 5/6. The
torsion correction factor �t and other rigidity parameters in the
rigidity matrix �Ds�� are presented below. The stress-strain rela-
tionship of the stiffener in the axis system �x�-r-s� as shown in
Fig. 2 may be written as

	
�x�

�r

�x�r

�x�s

�rs


 = �
E

1 − �2

�E

1 − �2 0 0 0

�E

1 − �2

E

1 − �2 0 0 0

0 0 G 0 0

0 0 0 G 0

0 0 0 0 G

�	 
x�


r

�x�r

�x�s

�rs


 �11�

The rigidity parameters �Ds�� of Eq. �10� may be obtained from
Eq. �11�; utilizing the stress-free conditions ��r=0� and ��rs=0�,
the rigidity parameters will be

Q̄1m =
E

1 − �2 and Q̄5m = Q̄6m = G �12�

The torsion correction factor �t may be written as

�t =

3kbs
2Q̄5m�h

2
− �ds +

h

2




Q̄6m��h

2

3

− �ds +
h

2

3
 =

3kbs
2�h

2
− �ds +

h

2




��h

2

3

− �ds +
h

2

3
 �13�

where k is the factor to get torsional constant of an isotropic beam
having rectangular section, which is a function of ds /bs ratio of
the cross section. The torsional constant �k� for the rectangular
section �depth=ds and thickness �width�=bs� can be calculated
from the torsional equation of rectangular cross section given by
Timoshenko and Goodier �35� as

k =
1

3�1 −
192

�5 �bs

ds

 �

n=1,3,5,. . .

�
1

n5 tanh
n��ds/2�

bs
� �14�

Now Eqs. �5�–�10� may be used to derive the elastic stiffness
matrix �kes�, mass matrix �mes�, and geometric stiffness matrix
�kgs� of a stiffener element following the procedure used for shell
element, and these matrices may be expressed as follows:

�kes� =� �Bs�T�Ds���Bs�dxdydz =� �Bs�T�Ds���Bs��J�d�d�d�

�15�

Fig. 2 Stiffener attached to the panel surface
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�mes� =� ��NDs�T�NDs�dxdydz =� ��NDs�T�NDs��J�d�d�d�

�16�

�kgs� =� �BGs�T��s��BGs�dxdydz =� �BGs�T��s��BGs��J�d�d�d�

�17�

where �Bs� and �BGs� are analogous to �B� and �BG� of the shell
element, respectively. The initial stress matrix ��s� looks identical
to that of the shell element but its submatrix ��s

1� for the stiffener
element is

��s
1� = ��xs� 0 0

0 0 0

0 0 0
� �18�

The elastic stiffness matrix, mass matrix, and geometric stiff-
ness matrix are computed for all the shell elements and stiffener
elements of the entire structure, and these matrices are accord-
ingly assembled together to form the corresponding global matri-
ces �K�, �M�, and �KG� of the stiffened shell panels with cutout.
The skyline storage algorithm is used to keep these three big size
matrices in single array. Both deep shell and shallow shell panels
can be analyzed with these elements.

2.3 Governing Equations. With the stiffness matrix �K�,
mass matrix �M�, and geometric stiffness matrix �KG� of the total
structure �panel skin and stiffeners, obtained in the Secs. 2.1 and
2.2 and adding those, respectively�, the equation of motion of the
structure can be written as

�M��q̈� + ��K� − P�KG���q� = �0� �19�
This is a general equation and it can be reduced as a special case
to get the governing equations for buckling, vibration, and dy-
namic stability problems as follows.

2.3.1 Buckling

��K� − Pcr�KG���q� = �0� �20�

where Pcr is the critical load of buckling.

2.3.2 Vibration

��K� − P�KG���q� − �2�M��q� = �0� �21�

where � is the vibration frequency of the structure subjected to
in-plane load and it becomes the natural frequency of vibration if
P attains zero value. The frequency of vibration becomes zero
when P attains critical value.

2.3.3 Dynamic Stability. Equation �19� can also be used to
solve the dynamic stability problem. Let the in-plane load P be
periodic and may be expressed as

P�t� = Ps + Pt cos �t �22�

where � is the frequency of excitation, Ps is the static component
of P, and Pt is the amplitude of its dynamic component, which
may be expressed in terms of static buckling load Pcr as follows:

Ps = �Pcr, Pt = �Pcr �23�

where � and � may be defined as static and dynamic load factors,
respectively. Now Eq. �19� can be written as

�M��q̈� + ��K� − �Pcr�KG� − �Pcr�KG�cos �t��q� = 0 �24�
The above equation represents a system of second order differ-

ential equation with periodic coefficient, which is basically the
Mathieu–Hill equation. The boundaries of dynamic instability re-
gions can be found by the periodic solutions having periods of T
and 2T, where T=2� /�. The range of primary instability region

with period of 2T is of practical importance �1� where the solution
can be achieved by expressing �q� in the form of the trigonometric
series as

�q� = �
k=1,3,5

� ��ak�sin
k�t

2
+ �bk�cos

k�t

2
� �25�

After substitution of the above equation �25� in Eq. �24� and
taking the first term of the series, the quantities associated with
sin �t /2 and cos �t /2 are separated out and processed accord-
ingly to eliminate the time dependent component, and it leads to

��K� − �Pcr�KG� �
1

2
�Pcr�KG� −

�2

4
�M���qab� = 0 �26�

where �qab� is either �ak� or �bk� depending on the use of plus or
minus of the dynamic in-plane load component, respectively. It is
basically an eigenvalue problem and it can be solved for known
value of �, �, and Pcr. The two frequencies corresponding to plus
and minus will indicate the boundaries of the dynamic instability
region.

2.4 Method of Solution. In the present investigation the dif-
ferent analyses for the laminated composite stiffened plate are
implemented by the finite element computer program written in
FORTRAN-90. The equations are solved using the technique pro-
posed by Corr and Jennings �36� where the matrices �K�, �M�, and
�KG� are stored in a single array according to skyline storage
algorithm. In all the cases, the stiffness matrix �K� is factorized
according to Cholesky’s decomposition technique. With this, the
solution for displacement is simply obtained by its forward elimi-
nation and backward substitution techniques. These displacement
components are used to find out the stress field in the Gauss
points. It is necessary because the stress field in the structure is
not uniform due the nonuniform nature of in-plane load, boundary
conditions, and presence of stiffeners. These stresses are used to
calculate the geometric stiffness matrices. The solution of Eqs.
�20�, �21�, and �26� goes through a number of operations �36�.
Moreover Eq. �26� requires a number of iterations to get the so-
lution since it comes under the category of eigenvalue problem.
The simultaneous iteration eigensolver technique developed by
Corr and Jennings �36� is utilized to extract the eigenvalues. In
such cases, the solution of eigenvector and eigenvalue is more
than one where the different solutions correspond to different
modes of vibration or different modes of buckling. The mode with
the lowest eigenvalue is quite important and it is known as fun-
damental mode. In the present investigation the dynamic instabil-
ity regions are plotted for the first mode of vibration.

3 Results and Discussions
The convergence and validation of the proposed finite element

model are presented, taking various examples from literature. The
problem under investigation is explained and the numerical results
of the considered problem are discussed in this section.

3.1 Convergence and Validation. The convergence and ac-
curacy of the proposed method are first established by comparing
the results of various problems with those of earlier investigators’
available in literature. The problems taken are described below.

3.1.1 Free Vibration of a Simply Supported Stiffened Plate.
The problem of a simply supported stiffened plate as shown in
Fig. 3 is used to carry out the convergence study. In the edges
along the side a the displacements u, w, and 	x are restricted and
v and 	y are allowed. In the edges along the side b the displace-
ments v, w, and 	y are restricted and u and 	x are allowed. All
these five displacements are the same as the displacement used in
the finite element formulation. The whole structure is modeled
with different mesh sizes for the free vibration analysis. The de-
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tails of the stiffened plate are given in Fig. 3. The results for the
first two natural frequencies are shown in Table 1. It shows a rapid
convergence with mesh refinement.

Again a mesh size of 8
8 is found to be sufficient to attain the
convergence. For the purpose of validation, the frequencies are
compared with the results reported by Long �37� using composite
beam-plate method and with finite element results of Thomas and
Abbas �22�. The results are in good agreement.

3.1.2 Free Vibration of a Spherical Shell Panel of Square
Base Having Two Stiffeners Along Its Two Center Lines. The sim-
ply supported stiffened spherical shell panel as shown in Fig. 4 is
used to investigate the free vibration analysis. The details of the
shell and stiffeners are given in Fig. 4 where the stiffeners are
taken to be symmetric with respect to the shell midsurface. The
whole structure is modeled with an 8
8 mesh for the analysis.
The first five natural frequencies are compared with the finite
element results of Nayak and Bandopadhyay �17�, Samanta and
Mukhopadhyay �19�, and Prusty �38� in Table 2. The results ob-
tained in these studies �17,19,38� are found to be in good agree-
ment compared with the present results.

3.1.3 Buckling of a Rectangular Plate With a Central Stiffener
Under Uniaxial Load. The problem of the rectangular stiffened
plate �Fig. 5� having simply supported boundary conditions at its
four edges is investigated for different plate aspect ratios �a /b�
and stiffener parameters ��=As /bh , �=EIs /bD�. The plate thick-
ness ratio �a /h� and isotropic plate and stiffener material ��� are
taken as 100 and 0.3, respectively. The dimension a is varied
keeping b as constant to get different values of aspect ratio �a /b�.
The stiffened plate is modeled with an 8
8 mesh for the analysis
in all cases. The nondimensional critical buckling stress parameter
k=�cr / ��2D /b2h� obtained in the present analysis is presented in
Table 3 with the analytical solution of Timoshenko and Gere �21�
and finite element solution of Mukhopadhyay �16�. The table
shows that the agreement between the results is very good. As

Timoshenko and Gere �21� did not consider the effect of stiffener
eccentricity and torsional rigidity, these parameters are taken as
zero in the present problem.

3.1.4 Buckling of a Rectangular Plate With Central Cutouts.
The problem of simply supported plate �a=b=0.508 m and h
=0.00254 m, Fig. 6� having square cutout �ca=cb� is investigated
for different cutout ratios �ca /a�. The material properties of this
plate, made up of Ti–6Al–4V titanium alloy �39� are E=11.04

1010 N /m2, G=4.28
1010 N /m2, and �=0.31. The whole
structure is modeled with a 10
10 mesh for the buckling analy-
sis. The contributions of the elements coming under the cutout are
not included in forming the global stiffness �K� and global geo-
metric stiffness �KG� matrices. The results obtained in the present
method are compared with the structural performance and resizing
�SPAR� finite element results of Ko �39� in Table 4. The results
are in good agreement.

3.1.5 Dynamic Instability of Simply Supported Square Plate
With Central Cutouts. The dynamic instability analysis is carried
out for a simply supported plate �a=b=0.5 m and h=0.005 m,
Fig. 6� having square �ca=cb� cutout ratios of ca /a=0.2 and
ca /a=0.8. The material properties of the plate are E=70

109 N /m2, G=26.92
109 N /m2, �=0.3, and �
=2800 kg /m3. The whole structure is modeled with a 10
10
mesh for the dynamic instability analysis. The first mode buckling
load of this plate without cutout is taken as the reference load to
plot the dynamic instability regions of the plate for both cutout
sizes. The static load factor ��� is 0.0. The nondimensional exci-

tation frequencies ��̄=�a2��h /D� obtained in the present analy-
sis are plotted in Fig. 7 along with the finite element results of
Sahu and Datta �29�. The results are matching well.

3.1.6 Dynamic Instability of Stiffened Square Plate Simply
Supported at All the Four Sides. The square plate �a=b=0.6 m
and h=0.00633 m� is attached with a stiffener �bs=0.0127 m and

Fig. 3 Rectangular stiffened plate

Table 1 Natural frequency „Hz… of a simply supported rectangular stiffened plate

Analysis

Mode 1 Mode 2

ds
�m�

ds
�m�

0.0 0.0254 0.0508 0.0 0.0254 0.0508

Present �2
2� 197.750 381.348 703.148 1419.06 1949.09 1572.55
Present �4
4� 137.525 270.400 305.941 279.151 293.429 348.586
Present �6
6� 136.901 263.784 291.624 264.098 279.250 325.867
Present �8
8� 136.846 262.932 290.413 263.255 278.285 323.185
Present �10
10� 136.857 262.765 290.181 263.109 278.102 322.692
Present �12
12� 136.855 262.718 290.110 263.053 278.046 322.552
Present �14
14� 136.854 262.702 290.082 263.047 278.023 322.500
Thomas and Abbasa 136.5 259.1 293.8 265.5 280.9 332.4
Longb 267.1 273.8 280.3 331.8

aReference �22�.
bReference �37�.

Fig. 4 Stiffened spherical shell panel having a square base
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ds=0.0222 m� on the bottom surface along its one center line.
The load is acting at the edges uniformly in the direction of the
stiffener. All the sides are simply supported. The nondimensional

excitation frequency ��̄=�a2��h /D� is obtained, taking first
mode buckling load of the stiffened plate. The static load factor
��� is kept as 0.2. The results of the upper and lower bounding
frequencies of the exciting force are presented in Table 5 along
with the finite element results taken from the graph �Fig. 10� of
Srivastava et al. �28�. It shows that the results are in good agree-
ment.

3.2 Problem Under Investigation. It is a doubly curved stiff-
ened shell panel with square cutout located at the center of the
panel subjected to uniform edge loading �Fig. 8� along x-direction.
The panel is attached with one stiffener along x-direction in the
center line. Four other stiffeners are also attached to the four sides
of the opening; the length of each stiffener is equal to the size of
the opening. The projection of the cutout in xy-plane is square
�ca /cb=1.0� in all cases and located at the center of the panels.
The geometrical properties of the stiffened panel are a=b
=0.5 m, h �thickness of the skin� =0.005 m, bs �stiffener width�
=0.005 m, and ds �stiffener depth� =0.02 m; and the material
properties of the panel skin and stiffeners are E=70
109 N /m2,
G=26.92
109 N /m2, �=0.3, and �=2800 kg /m3. The stiffen-

ers are attached to the bottom surface in all cases. All four sides of
the stiffened panels are simply supported in prebuckling, buck-
ling, free vibration, and dynamic instability analysis. The equation
of surface for flat panel, cylindrical shell panel, and spherical shell
panel is defined as

z = �Rx
2 − x2 + ��Ry

2 − �y −
b

2

2

−�Ry
2 − �b

2

2
 �27�

where x varies from −a /2 to +a /2 and y varies from 0 to b.
The flat surface is obtained by taking Rx=Ry =0.5
106 m,

which is sufficiently large in comparison to a and b. The cylindri-
cal surface is obtained by taking Rx=0.5
106 m. To get the cy-
lindrical surface with different radii of curvature, Ry is varied and
it varies from 0.2625 m to 0.5
106 m. When Ry becomes 0.5

106 m the cylindrical panels become flat panels. The spherical
shell panel is obtained by varying both Rx and Ry. Both radii of
curvatures vary from 0.2625 m to 0.5
106 m and the ratio of
radii of curvatures Rx and Ry is 1.0 in all cases. When both radii of
curvature become 0.5
106 m, the spherical panels also reduce to
the case of flat panel like the cylindrical panel. The surface of
parabolic hyperboloid is defined as

z = 2 
�Rx
2 − �a

2

2

− �Rx
2 − x2 + ��Ry

2 − �y −
b

2

2

−�Ry
2 − �b

2

2
 �28�

In this case Rx varies from �0.2625 m to −0.5
106 m and Ry
varies from 0.2625 m to 0.5
106 m with the ratio of Rx and Ry
as �1.0 in all cases. When �−Rx�=Ry =0.5
106 m, this panel
also reduces to flat panel. The basic shapes of the panels obtained
from the above equations �27� and �28� are shown in Fig. 9.

Table 2 Natural frequency „rad/s… of a simply supported spherical shell panel with two stiff-
eners along the two central lines

Mode No.
Present
�8
8�

Nayak and Bandopadhyaya

Samanta and Mukhopadhyayd
Prustye

�16
16�
El-8b

�8
8�
El-9c

�8
8�

1 40.2300 40.26 40.26 41.70 40.81
2 69.0282 70.98 70.97 74.11 72.13
3 69.1158 70.98 70.97 74.36 72.13
4 91.2984 96.06 96.06 99.18 92.92
5 105.680 104.94 105.69

aReference �17�.
bEight-noded element.
cNine-noded element.
dReference �19�.
eReference �38�.

Fig. 5 Simply supported stiffened rectangular plate under
uniaxial compression

Table 3 Buckling load parameter „k… for a simply supported rectangular stiffened plate under
uniaxial compression

a /b

�=10, �=0.05 �=5, �=0.2

Present
�8
8� Timoshenko and Gerea Mukhopadhyayb Present Timoshenko and Gerea Mukhopadhyayb

0.6 16.403 16.5 16.463 16.5
0.8 16.686 16.8 12.729 13.0
1.0 15.908 16.0 15.91 9.612 9.72 9.65
2.0 10.110 10.2 10.16 6.244 6.24 6.24
3.0 11.867 12.0 11.94 6.512 6.53 6.48
4.0 10.135 10.2 6.264 6.24

aReference �21�.
bReference �16�.
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The results of free vibration frequencies and excitation frequen-
cies of the load obtained in rad/s and the critical buckling stress
obtained in N /m2 are presented in nondimensional form as fol-
lows:

�i� nondimensional natural frequency: �=�b2��h /D
�ii� nondimensional buckling load: P̄cr= Pcrb /D, where Pcr

=�cr�b ·h+bs ·ds�
�iii� nondimensional bounding excitation frequency: �̄

=�b2��h /D

3.3 Numerical Results. The numerical results taking various
parameters of the investigation are presented in three groups as
free vibration, buckling, and dynamic instability. In the analysis
the whole structure is divided with a 10
10 mesh.

3.3.1 Free Vibration. The free vibration analysis of all four
�plate, cylindrical, spherical, and parabolic hyperboloid� types of
stiffened panels is carried out considering the effect of radius of
curvature and different cutout sizes. First to study the effect of
radius of curvature on the free vibration characteristics of the
panel, each of the four panels is divided in four types considering
the attachment of stiffener and cutout �ca /a=0.4�. Those are the
following.

�1� Type �i�: unstiffened without cutout
�2� Type �ii�: unstiffened with cutout �ca /a=0.4�
�3� Type �iii�: stiffened without cutout
�4� Type �iv�: stiffened with stiffened cutout �ca /a=0.4�

The nondimensional natural frequencies are presented in Table
6. Then to find out the effect of cutout size on the free vibration
behavior of the panels, each of the four panels is divided into two
types as un_c �unstiffened panels with opening� and st_c �stiff-
ened panel with stiffened opening�. In this analysis three radii of
curvature to span ratio as 0.525, 1.0, and 10.0 are taken. The
cutout ratios �ca /a� taken are 0.0, 0.2, 0.4, 0.6, and 0.8. The
results are presented in Table 7.

It is observed from Table 6 that the frequency of the unstiffened
cylindrical shell panel �Type �i�� gradually decreases with the in-
crease in radius of curvature. This is because the stiffness of the
panel gradually reduces with the increase in radius of curvature.
The same panel when a cutout �of ratio ca /a=0.4� is made �Type
�ii�� the free vibration behavior changes significantly. The fre-
quency of vibration increases with the increase in radius of cur-
vature up to some point and then decreases with the increase in

radius of curvature. It is maximum for a particular value of radius
of curvature. If the radius of curvature is less or more than this
value the frequency decreases. With a cutout in the structure, both
the stiffness and the mass reduce. The frequency of vibration de-
pends on both the stiffness and mass of the structure. The behav-
ior of panel �Type �ii�� is attributed by the combined effect of
stiffness and mass of the structure. If a stiffener is attached to this
panel �Type �iii��, the natural frequency of vibration gradually
decreases with the increase in radius of curvature as �Type �i��.
But with a low radius of curvature the frequency of the unstiff-
ened cylindrical panel �Type �i�� is more than that of the stiffened
cylindrical �Type �iii�� panel. The stiffener does not increase the
frequency rather it decreases the frequency at a lower radius of
curvature. When a stiffener is attached to the structure both the
stiffness and the mass of the structure increase. At a low radius of
curvature the cylindrical panel is at a higher stiffness. So due to
the stiffener the net stiffness of the structure does not increase
more in comparison to the increase in the mass. It causes the
reduction in frequency of vibration. This may be increased with
the increase in number of very thin stiffeners.

At a higher radius of curvature the frequency of the unstiffened
panel is less than that of the stiffened panel. In the case of the
stiffened cylindrical shell panel with stiffened opening �Type �iv��,
the frequency of vibration increases with the increase in radius of
curvature up to some point and then decreases with the increase in
radius of curvature as that of Type �ii�. In spherical shell panel for
all four types �Types �i�–�iv��, the frequency of vibration increases
with the increase in radius of curvature up to some point and then
decreases with the increase in radius of curvature. Again for low
radius of curvature the frequency of the unstiffened spherical
panel �Type �i�� is more than that of the stiffened spherical �Type
�iii�� panel like the cylindrical panel. The frequency of vibration
of the spherical shell panel stiffened/unstiffened without cutout in
low radius of curvature is very high in comparison to cylindrical,
parabolic hyperboloid, and flat panel �plate�. But the frequency of

Fig. 6 Perforated plate under uniaxial compression

Table 4 Buckling load Nx „lb/in.… of the simply supported square under uniaxial compression

Analysis

Buckling load Nx �lb/in.�

ca /a=0.0 ca /a=0.2 ca /a=0.4 ca /a=0.6 ca /a=0.8

Present �10
10� 146.157 127.551 110.424 103.786 104.190
Koa 145.734 125.244 109.416 102.880

aReference �39�.

Fig. 7 Dynamic instability regions of plate with square cutout
under uniaxial compression
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spherical shell panel with low radius of curvature reduces drasti-
cally when there is a cutout in the panel. In parabolic hyperboloid
shell panel for all four types �Types �i�–�iv��, the frequency de-
creases gradually with the increase in radius of curvature.

From Table 7, it is observed that the frequency of vibration of
cylindrical shell panel �un_c� with low radius of curvature reduces
gradually with high rate up to cutout ratio �ca /a� of 0.6 and it
increases slightly at ca /a=0.8. When an opening is made in this
panel and four stiffeners �size=cutout size� are attached to the
four sides of the opening, then the free vibration behavior of the
panel �st_c� changes. The frequency is more at ca /a=0.2 than at
ca /a=0.0. The frequency reduces up to ca /a=0.6 and then again
increases. At a higher radius of curvature the natural frequency
decreases at ca /a=0.2 and after that it gradually increases. The
spherical and parabolic hyperboloid shell panels behave the same
as the cylindrical shell panel at a higher radius of curvature �ra-

dius of curvature to span ratio=10.0�. The plate also behaves
similarly. In the spherical panel at a low radius of curvature �ra-
dius of curvature to span ratio=0.525� the frequency of vibration
reduces gradually with a high rate up to cutout ratio �ca /a� of 0.6
and it increases slightly at ca /a=0.8, but at a radius of curvature
to span ratio=1.0, the frequency decreases gradually with the in-
crease in cutout size both for stiffened and unstiffened cases. In
parabolic hyperboloid shell panel, in all cases, the frequency in-
creases gradually with the increase in cutout size.

3.3.2 Static Stability (Buckling). The static stability �buckling�
analyses of the panels are carried out similar to the free vibration
analysis presented above.

The nondimensional buckling load of the panels for different
radius of curvature to span ratios is presented in Table 8 and for
different cutout sizes are presented in Table 9. It is observed from
Table 8 that the buckling load of cylindrical shell panel for all four
types �Types �i�–�iv�� gradually decreases with the increase in
radius of curvature. The buckling load of the cylindrical panel
with cutout is less than that of the panel without cutout. At a lower
radius of curvature the decrease rate is much higher compared
with that at a higher radius of curvature. Again the buckling load
of the stiffened panel �Type �iii�� is higher than the unstiffened
cylindrical shell panel �Type �i��. Comparing the stiffened and
unstiffened cylindrical shell panels, the rate of increase in buck-
ling load of the stiffened panel with respect to that of the unstiff-
ened panel increases with the increase in radius of curvature. In
case of spherical shell panel, the buckling load increases with the
increase in radius of curvature up to some point and then de-
creases with the increase in radius of curvature for Types �i�, �iii�,
and �iv�. It is maximum for a particular value of radius of curva-
ture. In Type �ii� the buckling load gradually decreases with the
increase in radius of curvature. At a lower radius of curvature the
buckling load of spherical shell panel without cutout is less than
that of the cylindrical shell panel. The buckling load of the stiff-
ened shell panel �Types �iii� and �iv�� is always greater than the
unstiffened panel �Types �i� and �ii��, respectively. The buckling
load of the stiffened spherical panel with stiffened opening �Type
�iv�� is greater than the stiffened panel �Type �iii�� at a low radius
of curvature to span ratio of 0.525 and 0.55. In parabolic hyper-
boloid shell the buckling load for all four types �Types �i�–�iv��
gradually decreases with the increase in radius of curvature. The
buckling load of the stiffened parabolic hyperboloid shell panel
�Types �iii� and �iv�� is always greater than the unstiffened panel
�Types �i� and �ii��, respectively. At a low radius of curvature, the
buckling load of panel with cutout �Types �ii� and �iv�� is greater
than the panel without cutout �Types �i� and �iii��, respectively.

The buckling load of the unstiffened cylindrical �for all radii of
curvature� and spherical shell panels �at a low radius of curvature
to span ratio of 0.525 and 1.0� decreases with the increase in
cutout size. The buckling load of the unstiffened spherical shell
panel at a radius of curvature to span ratio of 10.0 is highest at
ca /a ratio of 0.2 and then gradually reduces with the increase in
cutout size. The buckling load of the same panel without cutout
and with cutout of ca /a ratio more than 0.2 is less than the value
at ca /a ratio of 0.2. The buckling load of the unstiffened parabolic
hyperboloid shell panel at a radius of curvature to span ratio of
0.525 is more at small cutout �ca /a=0.2� than that of the panel
without cutout and gradually decreases with the increase in cutout
size. For stiffened cylindrical panels �at a low radius of curvature
to span ratio of 0.525 and 1.0�, the buckling load decreases with
the increase in cutout size. At a radius of curvature to span ratio of
10.0, the buckling load decreases up to some point with the in-
crease in the cutout size and then increases with the increase in the
cutout size. For stiffened spherical panels �at a low radius of cur-
vature to span ratio of 0.525 and 10.0�, the buckling load de-
creases up to some point with the increase with the cutout size and
then increases with the increase in the cutout size. At a radius of
curvature to span ratio of 1.0, the buckling load decreases gradu-

Table 5 Nondimensional excitation frequency of a square sim-
ply supported stiffened plate under uniaxial compression

�

Present �8
8� Srivastava et al.a

�̄l �̄u �̄l �̄u

0 56.49 56.49 56.37 56.37
0.2 52.85 59.91 52.83 59.76
0.4 48.94 63.15 48.89 62.99
0.6 44.68 66.22 44.56 66.06
0.8 39.96 69.16 39.92 68.89
1 34.61 71.98
1.2 28.26 74.68

ldenotes lower boundary of the instability zone and u denotes upper boundary of the
instability zone.
aReference �28�.

Fig. 8 Perforated stiffened doubly curved panel with stiffened
central opening under uniaxial compression

Fig. 9 Geometry of different shell panels
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ally with the increase in cutout size. For stiffened parabolic hy-
perboloid shell panel at a radius of curvature to span ratio of 0.525
and 1.0 the buckling load increases up to some point with the
increase in the cutout size and then decreases. But at a radius of
curvature to span ratio of 10.0 the behavior is just opposite.

3.3.3 Dynamic Instability. After obtaining the free vibration
and static buckling characteristics it is now pertinent to study the
dynamic instability of stiffened shell panels with cutout. The re-
sults of the dynamic instability analysis of the considered problem
are presented in this section with critical discussion. The effects of
various parameters such as shell geometry, radius of curvature,
and cutout size are taken for the analysis. In the analysis the

whole structure is divided with a 10
10 mesh. The static load
factor ��� is kept as 0.4 in all cases. The dynamic load factor ���
is varied from 0 to 1.0. The buckling stress of the stiffened spheri-
cal shell panel �radius of curvature to span ratio of 0.2625� with-
out cutout is taken as the reference load, so as to plot the insta-
bility zones.

3.3.3.1 Effect of radius of curvature. The effect of radius of
curvature of the stiffened shell panel on their dynamic instability
characteristics is discussed in this section. The cylindrical, spheri-
cal, and parabolic hyperboloid stiffened shell panels without
cutout �Type �iii�, described in Sec. 3.3.1� are chosen for this

Table 6 Natural frequencies „nondimensional… of the panels for different radii of curvature to span ratio

Geometry Panel types

Radius of curvature to span ratio

0.525 0.55 0.6 0.8 1.0 2.0 5.0 10.0 106

Cylindrical shell panel

i 122.58 116.63 109.81 101.12 84.50 59.04 38.47 25.73 19.73
ii 72.85 73.62 74.79 76.67 75.78 51.41 37.39 26.13 20.81
iii 118.34 112.67 106.20 98.23 84.35 59.16 42.15 32.64 29.43
iv 119.02 122.90 128.20 95.75 80.84 60.49 38.44 31.07 29.18

Spherical shell panel

i 415.72 436.28 444.63 387.62 321.96 164.67 68.82 38.46 19.73
ii 52.17 56.06 60.82 72.26 78.70 85.86 66.58 37.98 20.81
iii 407.54 426.05 433.99 375.50 305.27 157.42 68.61 42.26 29.43
iv 115.00 131.12 155.01 204.17 216.37 132.65 61.08 38.81 29.18

Parabolic hyperboloid
shell panel

i 51.00 45.43 37.45 24.77 21.40 19.53 19.66 19.71 19.73
ii 60.11 54.67 45.81 29.46 24.30 20.82 20.78 20.80 20.81
iii 75.57 64.29 48.83 29.94 27.78 28.20 28.88 19.14 29.43
iv 90.82 79.44 62.23 37.07 31.76 29.04 29.06 29.12 29.18

Plate

i 19.73
ii 20.81
iii 29.43
iv 29.18

Table 7 Natural frequencies „nondimensional… of the panels for different cutout ratios

Geometry Cutout size �ca /a�

Radius of curvature to span ratio

0.525 1.0 10.0

un_c st_c un_c st_c un_c st_c

Cylindrical shell panel

0.0 122.58 118.34 84.50 84.35 25.73 32.64
0.2 109.46 121.42 83.71 83.48 25.23 28.19
0.4 72.85 119.02 75.78 80.40 26.13 31.07
0.6 52.82 109.50 57.02 76.86 32.29 39.86
0.8 54.71 120.93 73.96 84.91 59.20 62.88

Spherical shell panel

0.0 415.72 407.54 321.96 305.27 38.46 42.26
0.2 152.88 306.00 201.19 240.96 37.92 38.26
0.4 52.17 115.00 78.70 216.37 37.98 38.81
0.6 45.17 83.99 48.98 107.09 42.25 43.49
0.8 59.01 135.18 46.10 75.17 65.19 61.20

Parabolic hyperboloid shell panel

0.0 51.00 75.57 21.40 27.78 19.71 29.14
0.2 53.46 78.61 21.62 25.78 19.23 24.37
0.4 60.11 90.82 24.30 31.76 20.80 29.12
0.6 67.37 121.50 31.79 43.74 28.35 40.74
0.8 71.55 173.81 44.55 69.52 56.72 61.20

Plate

0.0 19.73un_c 29.43st_c

0.2 19.23un_c 24.47st_c

0.4 20.81un_c 29.18st_c

0.6 28.41un_c 40.83st_c

0.8 57.37un_c 67.27st_c

un_c denotes unstiffened panels with opening and st_c denotes stiffened panel with stiffened opening.
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analysis. The dynamic instability regions �DIRs� of cylindrical,
spherical, and parabolic hyperboloid panels for different radii of
curvature to span ratio are plotted in Figs. 10–12, respectively.

In the stiffened cylindrical �Fig. 10� and parabolic hyperboloid
�Fig. 11� shell panels the dynamic instability region shifts to the
lower frequency zone with a wider width with the increase in the
radius of curvature. It indicates that these structures become dy-
namically less stable due to the increase in radius of curvature. In
the case of stiffened spherical shell panel the instability region
�Fig. 12� shifts to the higher frequency zone with increase in
radius of curvature up to some value of radius of curvature and
then instability region shifts to the lower frequency zone with
further increase in radius of curvature.

3.3.3.2 Effect of cutout size. The cylindrical, spherical, and
parabolic hyperboloid stiffened shell panels with radius of curva-
ture to span ratio of 0.525, and plate with cutout �ratios of ca /a
=0.0, 0.2, 0.4, 0.6, and 0.8� are taken for the analysis.

The DIRs of the cylindrical, spherical, parabolic hyperboloid,
and flat panels for different cutout ratios are plotted in Figs.
13–16, respectively. The dynamic instability region of the stiff-
ened cylindrical shell panel shifts to the higher frequency zone
when the panel changes from no cutout to cutout ratio of 0.2 �Fig.
13�. When the cutout increases further the instability region shifts
to the lower frequency zone with a wider width. In the case of the
stiffened spherical shell panel the instability region �Fig. 14� shifts

Table 8 Buckling load „nondimensional… of the panels for different radii of curvature to span ratio

Geometry Panel types

Radius of curvature to span ratio

0.525 0.55 0.6 0.8 1.0 2.0 5.0 10.0 106

Cylindrical shell panel

i 1657.5 1485.5 1246.6 817.2 631.6 309.1 130.7 77.9 53.6
ii 126.9 126.1 122.4 105.5 93.6 67.9 57.2 47.1 43.6
iii 1788.5 1597.3 1361.7 919.0 716.4 355.1 198.7 133.0 125.4
iv 770.2 738.1 651.7 413.2 311.6 179.4 127.2 99.6 98.0

Spherical shell panel

i 794.2 975.8 1108.3 1007.0 851.0 490.0 237.8 137.5 53.6
ii 256.8 227.6 192.3 152.9 145.9 142.8 131.5 113.9 43.6
iii 1261.7 1513.5 1630.6 1337.8 1102.7 670.9 407.5 288.6 125.4
iv 1318.7 1534.4 1535.2 1257.8 1023.5 588.1 323.7 179.8 98.0

Parabolic hyperboloid shell panel

i 110.0 99.4 80.8 52.4 48.1 50.8 53.2 53.5 53.6
ii 114.0 100.4 78.4 46.0 40.7 44.4 44.7 44.0 43.6
iii 398.3 284.2 150.4 53.3 52.5 77.1 103.0 113.4 125.4
iv 514.8 424.3 299.6 234.4 312.8 261.0 129.1 109.6 98.0

Plate

i 53.6
ii 43.6
iii 125.4
iv 98.0

Table 9 Buckling load „nondimensional… of the panels for different cutout ratios

Geometry
Cutout size

�ca /a�

Radius of curvature to span ratio

0.525 1.0 10.0

un_c st_c un_c st_c un_c st_c

Cylindrical shell panel

0.0 1657.54 1788.51 631.66 716.42 77.97 133.08
0.2 473.53 927.75 292.81 445.25 66.02 98.53
0.4 126.94 770.26 93.61 311.60 47.15 99.69
0.6 44.04 301.15 34.00 148.16 36.48 113.02
0.8 21.26 109.73 21.79 80.79 36.86 152.55

Spherical shell panel

0.0 794.20 1261.77 815.04 1102.73 137.51 288.62
0.2 752.87 1260.48 533.14 1091.52 145.45 153.47
0.4 256.87 1318.73 145.93 1023.56 113.96 179.80
0.6 387.25 942.94 77.86 530.32 62.16 153.15
0.8 168.20 1203.50 55.29 266.99 44.309 136.56

Parabolic hyperboloid shell panel

0.0 110.09 398.31 48.16 52.56 53.56 113.44
0.2 114.91 469.38 43.42 78.96 48.16 63.96
0.4 114.03 514.88 40.75 312.88 44.00 109.62
0.6 99.76 447.59 35.76 161.68 42.06 148.73
0.8 59.17 356.61 23.50 65.01 40.65 136.56

Plate

0.0 53.63un_c 125.45st_c

0.2 48.26un_c 86.93st_c

0.4 43.61un_c 98.04st_c

0.6 41.17un_c 115.19st_c

0.8 40.49un_c 146.07st_c

un_c denotes unstiffened panels with opening and st_c denotes stiffened panel with stiffened opening
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to the lower frequency zone with increase in cutout size. The
instability zone shifts to the higher frequency zone when the cut-
out ratio changes from 0.6 to 0.8. In the stiffened parabolic hy-
perboloid shell panel with cutout �Fig. 15� the instability region
gradually shifts to the higher frequency zone with the increase in
cutout size. The dynamic instability region of the stiffened plate
�Fig. 16� shifts to the lower frequency zone when the stiffened
plate changes from no cutout to cutout ratio of 0.2. When the
cutout increases further the instability region shifts to the higher
frequency zone. All these behaviors are attributed to the combined
effect of stiffness and mass of the structures.

4 Conclusions
The conclusions of the present investigation are as follows.

1. The radius of curvature has a significant effect on the free
vibration and buckling behavior of the stiffened shell panels
with and without cutout.

2. The natural frequency of the stiffened cylindrical shell panel
without cutout is maximum when the radius of curvature is
minimum. When there is an opening in the panel this behav-
ior changes.

3. In the stiffened spherical shell panel with/without cutout the
free vibration frequency is maximum for an optimal radius
of curvature.

4. In the parabolic hyperboloid shell panel the frequency de-
creases gradually with the increase in radius of curvature.

5. The buckling behavior of the stiffened/unstiffened shell pan-
els with/without cutout is also affected significantly by the
radius of curvature of the panel.

6. The presence of cutout needs careful attention for the design
of these structures for vibration, buckling, and dynamic sta-
bility.

7. In the stiffened cylindrical and parabolic hyperboloid shell
panels the dynamic instability region shifts to the lower fre-
quency zone with a wider width with the increase in the

Fig. 10 Dynamic instability regions of stiffened cylindrical shell panel with-
out cutout for various radii of curvature to span ratio

Fig. 11 Same as Fig. 10 but for stiffened parabolic hyperboloid panel
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radius of curvature. It indicates that these structures become
dynamically less stable due to the increase in radius of cur-
vature.

8. In the case of the stiffened spherical shell panel the instabil-
ity region �Fig. 12� shifts to the higher frequency zone with
increase in radius of curvature up to some value of radius of
curvature and then the instability region shifts to the lower
frequency zone with further increase in radius of curvature.

9. The dynamic instability region of the stiffened cylindrical
shell panel shifts to the higher frequency zone when the
panel changes from no cutout to cutout ratio of 0.2. When
the cutout increases further the instability region shifts to the
lower frequency zone with a wider width. In the case of the
stiffened spherical shell panel the instability region shifts to
the lower frequency zone with increase in cutout size. The
instability zone shifts to the higher frequency zone when the
cutout ratio changes from 0.6 to 0.8.

10. In the stiffened parabolic hyperboloid shell panel with cut-
out the instability region gradually shifts to the higher fre-
quency zone with the increase in cutout size.

Fig. 12 Same as Fig. 10 but for stiffened spherical shell panel

Fig. 13 Dynamic instability regions of stiffened cylindrical
shell panel for various cutout ratios

Fig. 14 Same as Fig. 13 but for stiffened spherical shell panel
Fig. 15 Same as Fig. 13 but for stiffened parabolic hyperbo-
loid panel
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11. The dynamic instability region of the stiffened plate shifts
to the lower frequency zone when the stiffened plate
changes from no cutout to cutout ratio of 0.2. When the
cutout increases further the instability region shifts to the
higher frequency zone with a higher width.
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Refined Wave-Based Control
Applied to Nonlinear, Bending,
and Slewing Flexible Systems
The problem of controlling the position and vibration of open-chain flexible structures
undergoing fast maneuvers is of wide interest. In this work, the general flexible structure
is actuated by a single actuator at one end, which, depending on the case of interest, is
capable of rotating, translating, or simultaneously translating and rotating the root of the
flexible system. The goal is to control the motion of the entire flexible system from rest to
rest. This needs a simultaneous synthesis of position control and active vibration damp-
ing. A new strategy is presented based on further developments of wave-based control. As
before it views the actuator motion as simultaneously launching and absorbing mechani-
cal waves into and out of the system. But a new simple method of resolving the actuator
motion into two waves is presented. By measuring the elastic forces exchanged at the
interface between the actuator and the rest of the system, a returning displacement wave
can be resolved. This is then added to a set, launch wave to determine the actuator
motion. Typically the launch wave is set to reach half the target displacement, and the
addition of the return wave absorbs the vibration while simultaneously moving the system
the second half of the target displacement, neatly achieving the two goals in one con-
trolled motion. To date wave-based control has been applied to lumped, second-order,
longitudinally vibrating systems. The refined method avoids a difficulty that previously
arose in some contexts, thereby making wave-based control even more generic. It can
easily control nonlinear elastic systems, laterally bending systems (in the sense of Euler–
Bernoulli beams), and slewing systems where lateral translation and system rotation are
strongly coupled. Numerical simulation results are presented for controlled, rest-to-rest
maneuvers of representative flexible structures, all controlled using the same (linear)
algorithm. The first case is control of a string of rigid bodies interconnected by nonlinear
springs. The second problem is the rotational control of a very flexible one-link planar
manipulator. Finally, in an extension of the previous system, the actuator both translates
and rotates, slewing the flexible system to a target lateral displacement and a target
rotation angle simultaneously. The strategy is found to be remarkably effective with many
advantages. It seamlessly integrates position and vibration control. It is rapid, robust,
energy efficient, and computationally light. It requires little sensing, little knowledge
of the flexible system dynamics, and copes well with nonideal actuator behavior. It
is generic and easily handles a wide variety of flexible systems. It can get the entire
system to stop dead exactly at target with little vibration in transit.
�DOI: 10.1115/1.3086434�

Keywords: flexible structures, robotics, space structures, chain multibody structures,
dynamics, active vibration damping, position control, flexible joints, wave-based control

1 Introduction

This paper presents a new method for motion control of flex-
ible, open-chain, multibody systems, such as those arising in ro-
botics and in space structures. Typically an actuator, located at one
end of the flexible system, attempts to reposition the entire system
and thereby its unconstrained tip at the other end. The proposed
method interprets the motion of the structure as two-way me-
chanical waves, which enter and leave the structure at the actuator.
The strategy is based on understanding and measuring this two-
way motion at the actuator-system interface, and then controlling
it by suitable motion of the actuator. This line of attack leads
to control strategies that prove surprisingly simple, robust, and
effective. The strategy will be outlined and developed for simple

flexible systems composed of a series of lumped masses intercon-
nected by springs. It will be shown that the same controller works
very effectively for a larger class of flexible systems, including
nonlinear systems and continuous �distributed� systems such as
slewing continuum flexible beams �undergoing both rotation and
lateral translation�.

For an overview of other approaches used to date for this im-
portant problem, see, for example, Ref. �1�. For the most part the
extensive literature in this area has focused on issues such as
deriving and solving system equations �2–5�, developing dynamic
models �6,7�, system identification �8,9�, modal analysis and con-
trol �10,11�, various kinds of optimization �12–15�, various forms
of command or input shaping �16–20�, sliding mode control
�21,22�, and structure embedded actuators �23�. Wave ideas, dif-
ferent from the one here proposed, have also been applied to
control the vibration �but not the net displacement� of flexible
systems �24–26�.

The cited references are only a few examples of the very
extensive literature available on the topic, indicating both the

Contributed by the Applied Mechanics Division of ASME for publication in the
JOURNAL OF APPLIED MECHANICS. Manuscript received May 22, 2007; final manuscript
received December 30, 2008; published online April 22, 2009. Review conducted by
Wei-Chau Xie.

Journal of Applied Mechanics JULY 2009, Vol. 76 / 041005-1Copyright © 2009 by ASME

Downloaded 04 May 2010 to 171.66.16.44. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



importance and the complexity of the problem. Reference �27�
�page 165� observes that

to date a general solution to the control problem �of flexible
structures� has yet to be found. One important reason is that
computationally efficient �real-time� mathematical methods
do not exist for solving the extremely complex sets of partial
differential equations and incorporating the associated
boundary conditions that most accurately model flexible
structures.

The authors here propose that this long-desired general solution
is provided by the wave-based strategy. It has already been ap-
plied with great success to rectilinear strings of masses and linear
springs �28–34� and to gantry crane systems �35,36�. In this work,
the approach is extended to deal with a larger class of flexible
systems, all controlled by the same algorithm and configuration.

In Secs. 2–6, wave analysis and control will be developed fo-
cusing on the simplest flexible system, a chain of rigid masses
interconnected by linear springs. The developed theory �and the
related control scheme� is then applied to much more complex
systems with absolutely no changes. As confirmed by the tests, the
proposed method works very effectively on a large class of flex-
ible systems.

2 Literature Review and Key Ideas of Wave-Based
Approach

Classical control strategies, such as proportional-integral-
derivative, linear quadratic, Lyapunov-based, and H� methods,
frequently give poor results when applied to controlling systems
with significant flexibility. At best they lead to control parameters
that work for specific maneuvers of specific systems: Any system
change or maneuver change then requires a new controller design.
One reason is that these general approaches are almost blind to the
peculiar dynamic features that characterize flexible systems, espe-
cially delays between actuator motion and tip motion. These
methods tend to fight against these dynamics rather than exploit
them. Because of these difficulties, a series of special techniques
has been developed specifically for flexible systems, including
posicast, input shaping, sliding mode, input filtering, special tra-
jectory planning, and bang-bang optimal control �derived from
Pontryagins minimum principle�. However, it can be argued that
such special techniques go too far in the opposite direction from
the standard control strategies in that they require exact knowl-
edge of the flexible system dynamics and are not very robust to
system changes, or to modeling uncertainties, or to real actuator
behavior, or �in some cases� to changes in the desired maneuver.

The “blindness” of the classical strategies has been replaced by
a need for very detailed vision of the system along with precision
in maneuver planning and execution.

The wave-based approach by contrast avoids both problems. It
identifies and exploits general features common to a wide variety
of flexible systems, yet it does not require detailed knowledge of
the flexible system, nor advanced knowledge of the maneuver, nor
unrealistically ideal performance by the actuator. Instead of strug-
gling with the flexibility, it collaborates with it, and exploits it, to
achieve precise control in a natural way. This leads to many ben-
efits, including robustness, rapid motion, vibration control, and
energy efficiency.

Energy and momentum enter and leave the flexible system at
the interface between it and the actuator. The motion within the
system propagates simultaneously in two directions, from the ac-
tuator to the free-end, and back again, albeit in ways that are
faltering, complex, dispersing, and highly dynamic. Rest-to-rest
motion corresponds to getting the energy and momentum into, and
then out of, the system in just the right way to ensure that, when
all the energy has been extracted and the entire system has come
to rest again, it is, at that instant, exactly at target.

The actuator interacts directly only with the part of the system
dynamics to which it is directly connected, that is, the interface.

Its interaction with the rest of the system, and with the tip, is
indirect and delayed, mediated by these local interface dynamics.
The two-way component motions, one “outgoing” and one “re-
turning,” therefore need to be defined and measured only at the
interface, where all the controlling is to be done �and indeed
where it can only be done� over time.

It is contended here that the control problem therefore comes
down to proper control of the interface between the actuator and
the flexible system, which in turn involves �a� understanding and
interpreting the interface dynamics, �b� making a few key mea-
surements at this interface, and then �c� managing the two-way
energy/momentum flow through the interface by suitable motion
of the actuator. This interface control is precisely what is needed,
being both necessary and sufficient. To the extent that other con-
trol strategies are successful, they must also manage and control
the actuator-system interface, even if not as consciously and de-
liberately as in the present approach.

In other words, only limited aspects of the system dynamics are
pertinent to the control problem, and these should be seen from
the actuator’s perspective, acting on and through the interface dy-
namics. The actuator is seen as launching a “wave” into the sys-
tem and responding to a similar returning wave, and these two
actions can happen simultaneously. The term wave here includes a
net �dc� component as well as a vibratory one.

The key idea of wave-based control is to consider the actuator
as launching mechanical waves into the system. The launch wave
is set to reach half the target displacement. The return wave is
measured and added to this to give the total actuator motion. The
adding of the return wave to the actuator input has two crucial
effects. First it rapidly dampens all vibration in the real system,
becoming steady only when the real system vibrations have
ceased. Second, at steady state, the dc value of the return wave
will be identical to that of the launch component � 1

2 reference�,
and together they will sum to the reference exactly. The returning
wave component reveals to the controller all the system informa-
tion it needs to achieve superb control of both vibration and po-
sition in a format that suits its purposes exactly.

3 Wave-Based Modeling
In the previous works on wave-based control, the dynamics of

the flexible system were resolved into two “kinematical” compo-
nents. This approach will be briefly presented here as it forms the
basis of the developments carried out in this work.

Consider first perhaps the simplest flexible system: a string of
rigid bodies interconnected by linear springs, as depicted in Fig. 1.
A rectilinear displacement actuator is connected to one end.

The dynamics of such a system can be described by the super-
position of two semi-infinite systems, i.e., two systems that extend
forward to infinity, without any terminating boundary. Physically
an infinite system implies that physical quantities such as a move-
ment or a force travel along the system in a single direction and
never come back.

Since the real system is finite, a single infinite system is inad-
equate to model its dynamics. Rather, a second infinite system
models the returning component of the physical quantity moving
through the real system. The dynamics of the real finite system is
given by the superposition of the dynamics of the two semi-
infinite system, together with suitable boundary conditions.

This modeling approach leads to the scheme depicted in Fig. 2.
The blocks G1, G2, . . ., Gn represent the outgoing wave transfer

Fig. 1 A simple flexible system: rigid bodies connected by lin-
ear springs
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functions �WTFs�, while the blocks H1, H2, . . ., Hn are returning
WTFs. These transfer functions Gi are chosen to give the value of
the physical quantity flowing through the ith station as a function
of the value flowing over the �i−1�th station, going from left to
right �i.e., the outgoing component�. In the same way, Hi is as-
signed to give the value of the physical quantity flowing through
the ith station as a function of the value flowing through the �i
+1�th station, from right to left �i.e., the returning component�.

3.1 Position-Position Wave Transfer Function. In previous
wave-based modeling and control work, the physical quantity of
interest has been the displacement of the masses. For example,
with reference to the simple flexible system depicted in Fig. 2, Gi
gives the position of the ith mass as a function of the position of
�i−1�th mass. This choice leads to expressions for the outgoing
and returning transfer functions, G and H, which are easily imple-
mented and computationally light. To maintain the simplicity and
the effectiveness of the approach, the developments carried out in
this work will make use of these position to position wave transfer
functions.

Consider the case of a uniform system where all the springs are
characterized by the same stiffness and all the masses are equal. If
the position of the ith body is indicated by xi�t�, the equation of
motion of the mass itself is

mẍi�t� = k�xi−1�t� − 2xi�t� + xi+1�t�� �1�

where m is the mass of the body and k is the stiffness of the
springs. Assuming all initial conditions are zero and letting �n

=�k /m, the Laplace transformation of the previous equation
yields

s2Xi�s� = �n
2�Xi−1�s� − 2Xi�s� + Xi+1�s�� �2�

We want to derive the transfer function relating the movement of
the ith body as a function of �i−1�th one. So we look for an
expression like

Xi�s� = Gi�s�Xi−1�s� �3�

If the system is uniform, note that

Gi+1�s� = Gi�s� = Gi−1�s� = G�s� ∀ i �4�

so

Xi+1�s� = G�s�Xi�s� = G2�s�Xi−1�s� �5�

Substituting Eqs. �3� and �5� into Eq. �2� yields a quadratic ex-
pression for G�s�:

Xi−1�s��s2G�s� − �n
2�1 – 2G�s� + G2�s��� = 0 �6�

Thus,

G�s� =
1

2�n
2 ��s2 + 2�n

2� � s�s2 + 4�n
2� �7�

Only the solution for G�s� with the negative sign before the radi-
cal is causal, remaining finite with large s and having a phase lag
at all frequencies. This solution corresponds to a displacement
wave moving from left to right through the system.

H�s�, the returning wave transfer function, relates the displace-
ment of the ith body, in the second semi-infinite system, to the
displacement of the �i+1�th one. Following the same steps taken
to derive G�s�, the expression for H�s�, if the system is uniform,
turns out to be the same of the expression for G�s�. For more
details, see Ref. �28�.

This transfer function is not easy to implement in the time
domain, involving irrational functions of s in the Laplace domain.
As shown in Ref. �37�, however, it can be approximated in the
time domain by an analog system, composed of a spring, 2k, a
mass, m, and a grounded damper, c=�2km, as shown in Fig. 3.
Thus, the approximating “position to position” WTF, relating
Xi�s� to Xi−1�s�, turns out to be

G�s� =
�2

s2 + �s + �2 �8�

where �=�2k /m and �=�2km.

4 Position-Position Control
The ability to resolve the movement of the flexible system into

an outgoing component, traveling from the actuator to the free-
end, and a returning motion, coming back from the free-end to the
actuator, leads to very effective control schemes.

The idea is to do this resolving at the interface between the
actuator and the rest of the flexible system and move the actuator
so as to absorb the returning motion component while simulta-
neously launching the outgoing motion. So, from a control point
of view, one is interested only in the behavior of the first part
of the system, between the actuator and the first body, denoted
station 0 and station 1, respectively. This situation is sketched in
Fig. 4.

Fig. 2 A simple flexible system modeled as the superposition
of two semi-infinite systems using WTFs with Xi=Ai+Bi

Fig. 3 Analog approximation of the wave transfer function of
Eq. „7…, with Xi−1 as the input, Xi the output: cf. Eq. „3…

Fig. 4 Position-position control: only the first part of the sys-
tem is of interest
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By measuring the position of station 1 �x1�t�� as well as the
position of station 0 �x0�t�� the outgoing and returning wave can
be resolved. Defining a�t� and b�t� as the outgoing and returnings,
respectively, working in the Laplace domain gives

X0�s� = A0�s� + B0�s� �9�

X1�s� = A1�s� + B1�s� �10�
The capital letters represent the Laplace transform of the time
domain quantities indicated in small letters. The actual position of
the bodies is given by the sum of the outgoing and returning
components, according to the wave-based model.

Since

A1�s� = G�s�A0�s� �11�
and

B1�s� = G−1�s�B0�s� �12�

by substituting these into Eq. �10�, B0�s� can be computed as

B0�s� = G�s��X1�s� − G�s�A0�s�� �13�
and substituting into Eq. �9�,

A0�s� = X0�s� − G�s��X1�s� − G�s�A0�s�� �14�

By measuring x0�t� and x1�t�, i.e., the time domain values of X0�s�
and X1�s�, the two wave components can be determined from Eqs.
�13� and �14�. In practice, this can be implemented using the ar-
rangement in Fig. 5, with G�s� approximated by damped second-
order systems. The returning component, b0�t�, identified in this
way, is then added to the set, launch component, to make up the
total actuator motion x0�t�, as shown in Fig. 5.

The control arrangement can be considered as equivalent to
opening the return loop of Fig. 2, that is canceling the dashed
returning arrow in the block scheme of the figure. Thus, in the
wave model, the motion input to the system is considered to travel
around the one-way loop before leaving the system, never to re-
turn. In practice this is achieved by measuring the return wave and
continuously moving the actuator to absorb it, thereby actively
damping vibrations while allowing a precise net displacement.
Because the steady-state loop gain is unity, the final steady-state
value of b0�t� will equal that of a0�t�, so if the latter is set to half
the target displacement, the system will settle at target.

5 Rotating Flexible Systems
The approach described above works very effectively, without

modification, for a wide variety of cases, uniform or nonuniform,
translational or axially-rotational, long or short, damped �inter-
nally� or undamped, stiff or flexible, lumped or distributed, or
mixed. It can even be made to cope with nonlinear spring behav-
ior �38�.

Regarding rotational systems, a distinction must be made. For
axially-rotating systems such as gear-wheel shafts, modeled as
rotational inertial masses interconnected by torsional springs ro-
tating about a common axis, the equations of motion are second
order in time and space and identical in form to those of rectilin-
ear strings of masses and springs considered above. A quite dif-
ferent case arises, however, in robotics or in slewing of space
structures, for example, where the lumped system consists of a
string of inertial elements interconnected by revolute joints with
torsional springs. The axes of rotation of the elements, and of the
entire system, are then perpendicular to the plane of motion, and
in general there is both translation and rotation of each inertial
element. The equations of motion are now fourth order in space,
as seen, for example, in the continuous case in the form of the
Euler–Bernoulli beam equation.

When the same wave-based control system was applied to the
first case �axially-rotating systems�, not surprisingly it was found
to work exactly as in the rectilinear displacement case. Then,
when applied to the slewing case, wave-based control again ap-
peared to work for pure rotation, that is, when the axis of the
rotation of the actuator was fixed in space. When, however, the
actuator combined two controlled motions, translation and rota-
tion, a partially concealed problem became clear.

A combined slewing maneuver might specify a net target lateral
displacement of the system as well as a net target rotation. A
physical example might be a torsional actuator mounted on a trol-
ley, which itself could move on a rail, with both motions con-
trolled, or a controlled antenna array on a satellite whose motion
is also controlled. When an adapted version of wave-based control
was applied to this case, it was still successful in the sense that it
still controlled vibration and brought the system to rest at a new
position and angle. The problem was that the final translation and
rotation were not predictable in general when both motions hap-
pened simultaneously. Typically there were errors in the final
steady-state translation displacement and in the rotation angle.

Various ad hoc solutions were found to this problem, but a full
discussion will not be presented here. It seemed that the waves
associated with translation and with rotation became mixed in a
way that was hard to predict so that waves launched by rotation of
the actuator could then be absorbed by translation of the actuator,
and vice-versa, so that the half-plus-half strategy was compro-
mised by this mixing. A given motion, say, at station 1, which was
a combination of translation and rotation, could not be uniquely
associated with a certain translation and rotation of station 0. This
ambiguity in resolving the wave components led to inconsisten-
cies when the controller attempted to absorb returning waves by
simultaneous translation and rotation. Eventually the problem
prompted a fairly radical rethink and reformulation of wave-based
control in general, which not only solved this particular problem
but made wave-based control even more generic.

6 WBC With Cross-Over Wave Transfer Functions
As presented above, and in previous papers, the wave transfer

functions described the relationship between the motion �or the
force� in adjacent points in the system. As is generally the case in
physics, the wave variable was of one kind �e.g., displacement�,
and the WTFs were dimensionless. The new idea was to allow the
WTFs to cross over between variables, with new “cross-over
WTFs” �xWTFs� defined as the transfer function relating, for ex-
ample, displacement at one point, with, for example, force at an-
other point �or vice-versa� when the system is made one-way, that
is, quasi-infinite. The new xWTFs are no longer dimensionless.

This new concept, important in itself, in turn allowed a second
step, which also has powerful consequences and was here deci-
sive. With cross-over WTFs, the two related variables can now
refer to the same location in the system. In particular, for wave-
based control, focusing all the wave analysis on a single point
eliminates problems associated with the mixing �or ambiguity�

Fig. 5 Position-position control scheme
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between translation and rotation when going between points. The
chosen location is the interface between the controlling actuator
and the attached flexible system.

The idea is to modify the arrangement of Fig. 4 in the way
shown in Fig. 6 with two xWTFs, the first relating force to dis-
placement and the second displacement to force. This allows the
force at the actuator-system interface to be resolved into outgoing
and returning components:

F0�s� = F0A�s� + F0B�s� �15�

where the subscript 0 refers to station 0, that is, the interface,
while the subscripts A and B identify, respectively, the outgoing
and returning components.

For a uniform rectilinear system of masses and springs, as in
Fig. 1, F0 is the force in the first spring given by

F0�s� = k�X1�s� − X0�s�� = k��A1�s� + B1�s�� − �A0�s� + B0�s���

= F0A + F0B �16�

where Ai�s� and Bi�s� are, respectively, the outgoing and returning
components of the displacement of the ith station �Eqs. �9� and
�10�� and

F0A�s� = k�A1�s� − A0�s�� �17�

F0B�s� = k�B1�s� − B0�s�� �18�

In this view, the outgoing wave transfer function, Ḡ�s� in Fig. 6,
relates the outgoing elastic force at the interface �F0A in Fig. 6�
with the outgoing displacement of station 0 within an assumed
semi-infinite system.

Formally, it is

F0A�s� = Ḡ�s�A0�s� �19�

So, using Eqs. �11� and �17�,

Ḡ�s�A0�s� = k�A1�s� − A0�s�� �20�

=k�G�s�A0 − A0�s�� �21�

giving

Ḡ�s� = k�G�s� − 1� �22�
The returning cross-over wave transfer function must relate the

returning component of the motion B0 to the returning component
of the elastic force, F0B, both at the actuator interface. Thus

B0�s� = H̄�s�F0B�s� �23�

which, using Eqs. �12� and �18�, becomes

B0�s� = H̄�s��k�B1�s� − B0�s��� �24�

=H̄�s��k�G�s�−1B0�s� − B0�s��� �25�

and dividing by B0�s� yields

H̄�s� =
1

k�G−1�s� − 1�
=

G�s�
k�1 − G�s��

�26�

Thus by measuring both the position and force at the actuator,
outgoing and returning displacement and force waves can be iden-
tified. As in previous work, the returning component of the motion
is added to the set movement of the actuator, thereby absorbing it,
damping vibrations, and moving the system by a further steady-
state net displacement equal to that of the outgoing component.
Thus, again, the actuator motion is set to half the reference input
plus the returning wave b0�t� �that is, B0�s� in the time domain�.
The resulting control scheme is depicted in Fig. 7.

7 Control Applications and Testing
The new control scheme using colocated cross-over WTFs has

been extensively tested in numerical simulations by applying it to
many kinds of flexible system control. In this section, three quite
different applications are reported.

The first deals with a nonlinear rectilinear elastic system com-
prising two masses �the first representing the actuator and the
second the tip mass� interconnected by a nonlinear �hardening�
spring. The second applies the same control to rotating a very
flexible distributed robot arm modeled as a beam. Finally the
same distributed one-link arm is simultaneously both translated
and rotated from rest to rest by a single actuator. In all cases the
control scheme performs very well, with rapid transient response,
active vibration damping during motion, short settling time, and
zero steady-state error.

7.1 Nonlinear Lumped System. In the first application, the
system to be controlled consists of two masses, each of 1 kg,
interconnected by a nonlinear spring whose reaction force is F
=k1�x1−x0�+k2�x1−x0�3, where x0 and x1 are the displacements of
the actuator and end mass.

The cross-over xWTF Ḡ, from motion to force, is modeled by a
system as in Fig. 3, with the actuator position, Xi−1, as the input,
and the force in the spring as the output.

The xWTF H̄, from position to force, is modeled and imple-
mented as in Fig. 8.

Fig. 8 Block scheme implementing Eqs. „26… and „23…, which
becomes the xWTF H̄ in Fig. 7

Fig. 6 Wave-based control using cross-over WTFs: only the
interface between the actuator and the flexible system is of
interest

Fig. 7 Wave-based control using cross-over WTFs: only the
interface between the actuator and the flexible system is of
interest
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Figure 9 shows the response of the end mass to a unit step
reference, using standard wave-based control �WBC� �scheme as
in Fig. 5� and the colocated xWTF control �scheme as in Fig. 7�.
As evident from the picture, the standard scheme fails when ap-
plied to the nonlinear system. While it still effectively dampens
the vibrations, it leaves the system with a small steady-state posi-
tion error. This effect was considered in Ref. �38� where two other
solutions were proposed to modify the control scheme to deal with
the nonlinearity. By contrast, the new scheme avoids this kind of
error without any modification. The old scheme requires measur-
ing waves going from the actuator to the mass and back again,
inappropriately assuming linear superposition within the nonlinear
spring. In the new scheme the entire wave measurement and re-
solving takes place at the actuator end, by the colocation there of
the position and force measurements. Thus the nonlinear spring
dynamics are avoided in measuring the waves, and superposition
within the spring is not invoked. Provided the integral of the
spring force returns to zero, which is must if the initial and final
momenta are zero, the final steady-state position error will be
zero.

7.2 One-Link Planar Manipulator. The second test case is
control of a planar one-link flexible manipulator. A rotational ac-
tuator, placed at the root of the flexible beam, is used to move the
system in the horizontal plane. The target is a rest-to-rest rotation
of the entire flexible system.

The flexible system is now modeled as a continuous �distrib-
uted� system rather than a lumped one. A powerful multibody
dynamics simulation package, MBDYN, was used, which accurately
models beam bending effects using the finite volume method. It
also captures nonlinear behavior associated with large deforma-
tion, whether geometrical or material �elastic or elastoplastic be-
havior�. See Ref. �39� for further details on the beam model and
Ref. �40� �and reference therein� for an overview of the software.

The beam is assumed to be of aluminum �mass density �
=2700 kg /m3, Young modulus E=70,000 MPa, and Poisson ra-
tio �=0.33�. The geometric characteristics are t=3 mm, h
=0.1 m, and L=1 m, where t is the thickness of the beam, h the
height, and L the length of the beam itself.

The same control configuration as in the lumped case was used,
with exactly the same way of modeling the xWTFs, that is, using
a lumped second-order system, with dynamics described by Eq.

�8�. For the control scheme implementation, only the elastic force
at the interface between the actuator and the rest of the system is
required. So, only the elastic force at the root of the beam needs to
be measured, for example, using a strain gauge, as depicted in Fig.
10.

Since the actuator can apply only rotations, the outgoing and
returning waves are defined in terms of rotations, �. F0 in Eq. �16�
is a moment rather than a force, and, in this particular case, will be
the resultant elastic moment acting on the actuator.1 The xWTF

Ḡ�s� in Eq. �19� transforms from angular rotation to moment

while the xWTF H̄�s� in Eq. �23� goes from moment to angle.
Despite the more complex nature of the system, the same

simple transfer functions of Eqs. �22�, �26�, and �8� are found to
give very good performance. The values of the parameters of Eq.
�8� are not critical: for any reasonable choice the steady-state error
will be zero and stability is guaranteed. As will be seen, by ad-
justing these parameters the performance of the control system
can be fine-tuned further to achieve a classical trade-off between
improved rise-time, overshoot, and settling time.

1If the strain gauge is not placed exactly at the root of the beam, the moment of
interface forces about the actuator axis will have additional contributions from the
shear force and even from the axial force, multiplied by their respective moment
arms.

Fig. 10 The one-link planar manipulator with the required
strain gauge
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Fig. 9 Tip mass response to a step input using standard and cross-over WTFs
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Figure 11 shows the rest-to-rest rotation of the system tip with
and without control. The system is rotated by 1 rad in 0.5 s, with
a ramp input. Four curves are shown. One is the uncontrolled case
in which the vibrations are very large. The other three curves are
the response of the system under wave-based control using
xWTFs.

By varying the natural frequency � of the transfer function
G�s� �Eq. �8��, the response can be made faster �by increasing ��
but less damped, or slower �by decreasing �� and more damped.
Eventually, by an appropriate choice of �, the overshoot can be
completely avoided.

Figure 12 shows the launching and the returning waves a0 and
b0, whose sum gives the actuator movement �0. The launch wave
is set to be half the reference input, while the returning wave is
resolved by the control scheme and added to the launch wave to
give the movement of the actuator. Again, it is worth noting that,
at steady state, the two waves assume the same dc value of half

the target. The final angle accuracy is limited only by that of the
actuator angle sensor.

If the launch wave a0 is a ramp, or constant velocity, then
during the transit the returning wave also quickly settles to a ramp
of equal velocity. After a short while the system then moves at a
constant angular velocity throughout, as if rigid, with vanishing
vibration. The system energy is then all kinetic, the entire strain
energy having been released. For most applications this rigidlike
behavior for the midtransit phase would be considered ideal. For
short maneuver times, there may not be time for this effect to be
noticed, but even without it, the system will still arrive exactly at
target and quickly settle there.

7.3 Slewing One-Link Manipulator. Now consider the case
of the same distributed flexible arm but controlled by an actuator
capable of both rotation and translation. The translation compo-
nent is taken to be in the y direction, perpendicular to both the
rotation axis of the actuator and the initial direction of the axis of
the beam in Fig. 10.

7.3.1 Pure Lateral Translation. First consider the case of pure
lateral translation, with an actuator capable of only lateral motion
without rotation. An example would be a flexible system cantile-
vered from a trolley on rails, with the trolley moving along the
rails at right angles to the flexible system. The flexible system is
clamped to the trolley, the motion of which constitutes the actu-
ating input.

Because the actuator can supply only lateral motion, both the
launching and absorbing must be achieved by this lateral motion.
When a wave-based strategy similar to that for pure rotation is
applied, it is found that the system does rapidly move to the cor-
rect new position, again with an elegantly controlled, almost vi-
brationless motion.

When, as here, the actuator is moved laterally at a fixed angle,
it not only launches a translation wave but also implicitly launches
a rotational �bending� wave, needed to keep the interface angle
constant. The actuator not only pushes the system sideways but
also supplies an implicit “twist” necessary “just to keep it
straight:” in other words, applying a shear action necessarily im-
plies also applying a bending moment. This double launch action
propagates through the system and must then be absorbed in re-
turn to the actuator. Although the actuator can only translate, it is
still able to affect the “double” absorption. The control scheme
uses the actuator’s lateral or y-position and the shear, elastic force
in the same y direction, both measured at the actuator-system
interface, to resolve the movement into outgoing and returning
component motions.

Figure 13 shows the tip response, while Fig. 14 shows the ac-
tuator motion with its two component motions, a0 and b0. Again,
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Fig. 11 Beam tip rotations for a very fast rest-to-rest maneu-
ver. The reference input is to rotate the system by 1 rad in 0.5 s,
following a ramp. Responses are shown for no control and with
G„s… „Eq. „8…… in the controller tuned to different natural
frequencies.
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by changing the natural frequency of the model of the transfer
function G�s�, the transient of the response can be fine-tuned
within an already well-behaved response.

7.4 Combined Angular Rotation and Lateral Displace-
ment. When the actuator both translates and rotates, the launching
again involves both kinds of motion, whether explicitly or implic-
itly. The absorbing can also be done with translation alone, or with
rotation alone, or with both acting simultaneously. Each case was
investigated with the traditional wave-based control �involving
measurements at the actuator and at a second point within the
flexible system�. Again in all cases the system settled, but at a
steady-state position that, in general, was hard to predict. The final
absorbed components of each motion typically were no longer
half the launched components, indicating a mixing between the
translation and rotation component waves. However, when the
modified wave-based control was implemented using xWTFs and
making all the measurements at the interface between the actuator
and the system, the control system was found to work perfectly.
The desired lateral translation and the desired rotation could be
treated as if they were independent motions, each with their own
control systems as before �as in Secs. 7.2 and 7.3.1�, even when
both were active simultaneously, using the same simple control
technique for each. Thus the y-translation control system uses the
interface translation and interface �elastic� force in the same
y-direction to do the launch and absorbing, while the rotation
control uses the interface angle and bending moment. Because of
the net rotation, in general the orientation of the beam axis will
not be perpendicular to the y-displacement direction, so the elastic
force in the y-direction will be a combination of the relevant com-
ponents of the shear and axial forces acting at the interface at
every instant.

Figures 15 and 16 show the response for a translation of the
actuator of 1 m combined with a rotation of 1 rad. Both standard
WBC and colocated xWTF WBC have been used. While both
quickly dampen system vibrations, the standard WBC leaves the
system in a wrong final position, whereas WBC with xWTFs has
zero steady-state errors.

One way to view the improvement is as follows. Classical
WBC involved making measurements at two physically separated
points, say, stations 0 and 1. But for flexing vibrating systems that
both translate and rotate, the interconnecting two-way motion is
not uniquely defined. A given rotation and translation combination
at station 1 at any instant can arise due to different possible trans-
lation and rotation combinations at station 0. So the outgoing and
returning waves have an inherent ambiguity. On the other hand,
by using xWTFs, all the measurements and wave resolution can

be done at a single point, which is also the point at which energy
and momentum enter and leave the flexible system, and where the
control is done. The addition of the returning wave motion guar-
antees energy absorption, while the conservation of momentum
�linear and angular� ensures that the net associated absorbing dis-
placements will equal the launch displacements. Thus the system
must settle and do so exactly at target.

8 Final Comments
In all the results presented in this paper, there is scope for some

further improvement, in particular, in the form of the launch wave
chosen by the controller before the addition of the return wave.
For example, the ideas outlined in Ref. �32�, called wave-echo
control, can be used to modify the launch wave in real time to
cause the tip to stop dead on arrival at target, in a time-reversed,
mirror-image of the tip’s initial motion. Also, the way of modeling
the WTF G�s� could be further developed to some advantage. But
these further refinements are not considered here.

Although the actuator has here been assumed to be ideal, it does
not have to be. Because the wave measurements are taken at the
actuator-system interface, they come after the actuator dynamics.
Thus the control strategy based on these measurements is not
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strongly inhibited when the assumption of ideal actuator perfor-
mance is relaxed. Again, for brevity, this issue is not elaborated
upon here.

In developing the analysis and applying the control strategy, at
no point was it necessary to make the “small angle” assumption
frequently invoked in analyzing laterally vibrating systems. In
fact, the translations and rotations can be arbitrarily large, whether
in the transient motions or in the steady-state displacements, with-
out loss of accuracy and performance.

As has been seen, a control strategy that achieves rest-to-rest
maneuvers of a flexible system using a single actuator must insert
energy and linear and angular momenta into the system and then
extract them again in such a way that when they have all returned
to zero, the system is exactly at target. If so, any other strategy
must be doing just this �perhaps even unconsciously�. Wave-based
control claims to do this consciously and deliberately.

9 Conclusion
New wave-based control strategies have been presented that

can get a generic flexible system to move from rest in one position
to rest exactly at a new target position, very rapidly, with little
vibration in transit, and short settling times. The strategy has been
extensively tested on computer simulated systems, involving both
lumped and distributed flexible systems, both linear and nonlinear.

The computational load is light, so real-time control is very
feasible. Few measurements are needed and these are taken at the
actuator. There are no restrictions to small displacements and the
approach easily copes with arbitrarily large, linear or angular,
transient or steady-state motions.

Most of the problems associated with other approaches seem to
have been avoided. For example, no accurate system model is
needed, nor system identification, nor modal analysis �whether
with exact, or assumed modes, or truncated modes�. There is no
need for precise switching times, as in bang-bang control, or for
ideal actuator behavior. There is no separation of the motion into
rigid-body and flexible modes, nor subsequent concerns about
coupling between these two artificially separated motions. Mode
spillover does not arise. The chatter issues of sliding mode control
are also avoided, and actuator commands are smooth. Neither is
there any conflict between position control and active vibration
damping, these two functions having been seamlessly integrated
into one motion.

Any of the many attractive features of the new control strategy
could be considered a significant point of merit. To find them all
in one method seems exceptional.
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In- and Out-of-Plane Vibrations of
a Rotating Plate With Frictional
Contact: Investigations on Squeal
Phenomena
Rotating plates are used as a main component in various applications. Their vibrations
are mainly unwanted and interfere with the functioning of the complete system. The
present paper investigates the coupling of disk (in-plane) and plate (out-of-plane) vibra-
tions of a rotating annular Kirchhoff plate in the presence of a distributed frictional
loading on its surface. The boundary value problem is derived from the basics of the
theory of elasticity using Kirchhoff’s assumptions. This results in precise information
about the coupling between the disk and the plate vibrations under the action of frictional
forces. At the same time we obtain a new model, which is efficient for analytical treat-
ment. Approximations to the stability boundaries of the system are calculated using a
perturbation approach. In the last part of the paper nonlinearities are introduced leading
to limit cycles due to self-excited vibrations. �DOI: 10.1115/1.3112734�

1 Introduction

Rotating plates occur in many technical applications such as
computer hard drives, turbines, saws, clutches, and disk brakes. In
some of these applications squeal phenomena arise due to insta-
bilities of the system, of which the plate plays an essential role.
Those effects are usually unwanted. In many cases the instabilities
and therefore the squeal phenomena are due to self-excited vibra-
tions originating from frictional loads acting on the surface of the
rotating plate. The present paper deals with rotating plates in con-
tact with idealized friction pads.

Various questions related to rotating plates have been exten-
sively investigated in literature. Probably among the first publica-
tions in the field were the papers by Lamb and Southwell �1,2�,
giving the equations of motion of a rotating Kirchhoff plate taking
into account the effect of centrifugal stiffening due to membrane
stresses. Another approach is to derive the equations of motion for
plates using the corresponding kinematic assumptions in the basic
equations of the theory of elasticity �see, e.g., Ref. �3��. For spin-
ning disks, different kinds of modeling strategies are reviewed and
compared in Refs. �4,5�.

It is well known that the linear disk and plate equations are
decoupled. Whereas a derivation from the linear deformation gra-
dient yields linear equations, disk and plate equations are coupled
through nonlinear terms when the nonlinear deformation gradient
is used �3�. If the plate interacts with other mechanical systems,
coupling between disk and plate vibrations is possible even when
using a geometrically linearized theory. In our paper, the plate
interacts with idealized friction pads, which may lead to such a
type of coupling. Especially concerning the problem of brake
squeal, where only small deformations occur and therefore the
geometrically linearized theory seems to be appropriate, the influ-
ence of the disk vibrations to the plate vibrations has not been
fully investigated, although experimental results seem to indicate

this type of coupling �6�. An overview directly related to the
present paper, i.e., friction induced instabilities in rotating disks, is
given by Mottershead �7�.

Ono et al. �8� considered a rotating plate in frictional contact
with a transverse dynamical system as a model of a computer hard
drive. Centrifugal and aeroelastic effects were taken into account,
as required by typical rotational speeds of hard drives. In the
context of brake squeal Ouyang and Mottershead �9� investigated
a stationary plate loaded by a rotating friction couple. These re-
sults explain the instabilities occurring in a rotating plate, pro-
vided the effect of centrifugal stiffening can be neglected. It has,
however, to be said that the model contains slight inconsistencies
regarding the modeling of the frictional contact, since normal and
friction forces are not perpendicular at all times in this analysis. A
broad overview of models related to the squeal of disk brakes is
given in Ref. �10�, and an overview about the physical phenomena
in friction induced vibrations is given in Ref. �11�.

Nevertheless, none of the papers cited above comment on the
possible coupling between disk �in-plane� and plate �out-of-plane�
vibrations, in general, and due to contact forces originating from a
frictional contact, in particular. The paper by Tseng and Wickert
�12� aims in this direction by investigating a rotating plate loaded
by a given shear stress acting like a follower force on the surface
of the plate. Following this approach it is possible to calculate the
membrane in-plane stresses in a first step and then introduce them
into the plate equations in a second step. Since the forces acting
on the plate are modeled as a given shear stress their magnitude
does not depend on the transverse displacement of the plate,
which excludes additional coupling effects of the in- and out-of-
plane vibrations.

In the present paper we propose a model of a disk brake, which
takes into account in- and out-of-plane motions of the brake rotor,
and its interaction with friction pads. Using Kirchhoff’s kinemati-
cal assumptions for the rotating continuum in interaction with
friction pads we derive a new boundary value problem from the
basics of the theory of elasticity using the variational approach.
The consistent contact formulation based on Coulomb’s law of
friction given by Hochlenert et al. �13� is retained and extended to
distributed contact. Concentrating on the coupling effect of the
pads, which has not been investigated in literature, we prefer to
work with the linear deformation gradient. For completeness we
show in Sec. 4.4 that working with the nonlinear deformation
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gradient essentially introduces the effect of centrifugal stiffening
into the model but does not yield an additional coupling in the
linearized equations. Neglecting in-plane degrees of freedom of
the pads we investigate whether there is a coupling induced by the
out-of-plane degrees of freedom of the pads. It is established that
the linearized equations for the in- and out-of-plane motions are
decoupled and thus can be solved independently. This justifies the
discretization approach described in Ref. �13�. The mathematical
model presented is efficient to handle even analytically using per-
turbation techniques and at the same time it is rather flexible al-
lowing for various extensions.

A perturbation approach developed in Refs. �14,15� is used to
approximate the stability boundaries of the present model. In this
context the terms originating from the frictional load are consid-
ered as perturbations to the problem. The equations of motion of
the unperturbed problem corresponding to the out-of-plane vibra-
tions can be written as infinitely many uncoupled two-dimensional
systems, making it possible to derive approximations to the sta-
bility boundaries by considering these reduced systems only. New
explicit perturbation formulas are derived, which prove to be an
efficient tool in the stability analysis.

In the last part of the paper a reduced nonlinear model with
parameters corresponding to a standard disk brake is studied. It is
shown that depending on the parameters, the system can get un-
stable either via a sub- or a supercritical Hopf bifurcation. The
latter one serves as an explanation for the nonlinear effects ob-
served in laboratory experiments with a standard disk brake that to
the extent of the authors’ knowledge so far have not been inves-
tigated.

2 Derivation of the Mathematical Model
Consider a rotating Kirchhoff plate in frictional contact with

idealized brake pads, as shown in Fig. 1. The pads are composed
of massless pins in contact with the plate at a single point. In the
following we will refer to this as a pointwise elastic model. For
simplicity the pins are assumed to have identical characteristics.
The model, however, can easily be extended to take into account a
nonuniform distribution of the load among the pins. In Fig. 2 the
plate is in contact with a single pair of pins. For the derivation of
the equations of motion we have to consider the kinematics of the
problem and the forcing terms arising due to the pads.

2.1 Kinematics. As usual in Kirchhoff plate theory we as-
sume the following.

• Transverse normal stress can be neglected, i.e., �z=0.
• Material points located on a normal to the neutral plane in

the undeformed configuration and in the deformed configu-
ration will be located on one and the same normal to the
deformed neutral plane; moreover, the segment formed by
these normals is inextensible.

A point on the neutral plane of the plate with the position vector
pM0=xex+yey in the undeformed configuration experiences the
displacement

uM = u�x,y,t�ex + v�x,y,t�ey + w�x,y,t�ez �1�

and its position vector in the deformed configuration is given by

pM�x,y,t� = �x + u�x,y,t��ex + �y + v�x,y,t��ey + w�x,y,t�ez �2�

According to the Kirchhoff assumption the unit normal vector at a
point of the neutral plane is given by

e��x,y,t� =

�pM

�x
�

�pM

�y

��pM

�x
�

�pM

�y
� �3�

and hence a point on the plate surface is given by

p�x,y,t� = �x + u�x,y,t��ex + �y + v�x,y,t��ey + w�x,y,t�ez

−
h

2
e��x,y,t� �4�

The displacement vector of an arbitrary point of the plate is there-
fore

u�x,y,z,t� = uM�x,y,t� + z�e��x,y,t� − ez� �5�

which can be expanded in a Taylor series with respect to u, v, and
w to arbitrary order. The linearized expression reads

u�x,y,z,t� = �u − zw,x�ex + �v − zw,y�ey + wez �6�

When differentiating Eq. �2� with respect to time we have to con-
sider ẋ=−�y and ẏ=�x due to the rotation of the plate, which
will be important for the inertia terms arising in the equations of
motion.

When considering the point on the surface of the plate currently
in contact with a certain pin belonging to the pad we have to
calculate its positions xP and yP as shown in Fig. 3. From geo-
metrical considerations it is seen that

�̄xP = −
h

2
sin�arctan w,x�xa + �̄xP,ya + �̄yP,t��

= −
h

2

w,x�xa + �̄xP,ya + �̄yP,t�
�1 + w,x�xa + �̄xP,ya + �̄yP,t�2

ex

ey

ez

µ

k

ρh, E, ν

Ω

ex

ey

ez

ϕp

�
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B

Fig. 1 Kirchhoff plate in distributed frictional contact
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�̄yP = −
h

2
sin�arctan w,y�xa + �̄xP,ya + �̄yP,t��

= −
h

2

w,y�xa + �̄xP,ya + �̄yP,t�
�1 + w,y�xa + �̄xP,ya + �̄yP,t�2

where w,x means differentiation of the function w with respect to
x. These are fixed point equations of the type

��̄xP
k+1,�̄yP

k+1�T = g��̄xP
k ,�̄xP

k � with �̄xP
0 = 0, �̄yP

0 = 0 �7�

Since w,x and w,y are small compared with unity, the Banach fixed
point theorem is applicable and Eq. �7� can be solved to arbitrary
precision.

We can now calculate xP=xa+�xP and yP=ya+�yP where

�xP = �̄xP + u�xP,yP,t� �8�

=−
h

2

w,x�xP,yP,t�
�1 + w,x�xP,yP,t�2

+ u�xP,yP,t� �9�

�yP = �̄yP + v�xP,yP,t� �10�

=−
h

2

w,y�xP,yP,t�
�1 + w,y�xP,yP,t�2

+ v�xP,yP,t� �11�

are again fixed point equations that can be solved to arbitrary
precision. In the linear case, however, we have

�xP = −
h

2
w,x�xa,ya,t� + u�xa,ya,t� + o�u,w� �12�

�yP = −
h

2
w,y�xa,ya,t� + v�xa,ya,t� + o�v,w� �13�

Similar relations hold for the lower contact point. Since �xP and
�yP appear only in the argument of the functions u and w, in the
geometrically linearized equations they do not make a difference,
namely,

w�a + �xP,y,t� = w�a,y,t� + o�u,w� �14�

2.2 Contact Forces. We now investigate the contact forces
acting between one of the pins of the pad and the plate �see Fig.
4�. With a pad formed by infinitely many distributed pins, these
forces will be substituted by stresses. The normal force is given by

NP = − NP̄ = NPe��P
and the friction force is

RP = − RP̄ = RP

vP̄ − vP

�vP̄ − vP�

which means that its direction is opposite to the relative velocity
between the pin and the contact point on the plate. Using Cou-
lomb’s law of friction

RP = �NP �15�

and the force balance at the pin in ez-direction

�NP̄ + RP̄� · ez + N0 − k�zP̄ + h/2� = 0 �16�

makes it possible to calculate NP̄ and RP̄.
The resulting contact forces can be obtained by integrating over

all pins, i.e., the area B of material points in contact with the pins
�see Fig. 1�. Since the segments normal to the neutral plane stay
rigid, according to the kinematical assumptions, loads on the sur-
face of the plate can be replaced with an equivalent force

F = Fxex + Fyey + Fzez �17�

and a torque

T = Txex + Tyey �18�
both acting on the neutral plane of the plate.

3 Boundary Value Problem for the Rotating Plate
With Pads

3.1 Principle of Virtual Work. In Kirchhoff plate theory, the
inertia of the plate is assumed to be concentrated in the neutral
plane of the plate. Hence the principle of virtual work can be
stated as

�
V

	�
d2

dt2pM · �pM + �xx�exx + . . . + �xz�exz
dV

=�
A

�F · �pM + Tx�w,y − Ty�w,x�dA �19�

where A is the area of the surface of the plate, see Fig. 1. The
terms occurring in Eq. �19� will be discussed in more detail below.
The acceleration vector can be calculated from Eq. �2� by simple
differentiation, noting that ẋ=−�y and ẏ=�x, due to the rotation
of the plate. Substituting the displacement vector �6� into the well
known strain-displacement relations one obtains the strains eij. To
keep expressions simple we first work with eij linearized with
respect to u, v, and w. The stresses in Eq. �19� are calculated from
the stress-strain relations for linear isotropic material with the
plane stress assumption �zz=0.

3.2 Derivation of a Boundary Value Problem. In order to
derive the equations of motion from Eq. �19� we have to apply a
variant of Gauß theorem

�
V

f�w,xdV = −�
V

f ,x�wdV +�
S

f�wnxdS �20�

several times, where nx denotes the x-measure number of the nor-
mal vector n on S. Similar relations hold for the y- and the

NP

RP

NP

RP

P

P̄

N0 − k(zP̄ + h/2) − d żP̄

Q̄

Q

NQ

RQNQ

RQ

N0 + k(zQ̄ − h/2) + d żQ̄

Fig. 4 Contact forces
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z-direction. Carrying out the variations in Eq. �19� we arrive at
expressions

�
V

fx�udV +�
S

�Vu · n��udS +�
S

�Mx
u · n��u,xdS

+�
S

�My
u · n��u,ydS +�

V

fy�vdV +�
S

�Vv · n��vdS

+�
S

�Mx
v · n��v,xdS +�

S

�My
v · n��v,ydS +�

V

fz�wdV

+�
S

�Vw · n��wdS +�
S

�Mx
w · n��w,xdS +�

S

�My
w · n��w,ydS

= 0 �21�

from which the boundary value problems for u, v, and w follow
by applying the main theorem of variational calculus. It is inter-
esting to note that the boundary value problem is by no means
unique. This can be easily seen by noting that terms of the form

�
V

f�w,xydV �22�

occur. Depending on whether integration by parts is performed
first for x or y, different boundary conditions arise. In fact, there
are infinitely many possible boundary value problems that can be
derived from Eq. �19�. In order to preserve symmetries of the
problem, we will treat terms of the form �22� in the following
way:

�
V

f�w,xydV =
1

2�
V

f�w,xydV +
1

2�
V

f�w,xydV

=
1

2	−�
V

f ,x�w,ydV +�
S

f�w,ynxdS

+

1

2	−�
V

f ,y�w,xdV +�
S

f�w,xnydS
 �23�

where a second integration by parts yields

�
V

f�w,xydV =
1

2	�
V

f ,xy�wdV −�
S

f ,x�wnydS +�
S

f�w,ynxdS

+

1

2	�
V

f ,yx�wdV −�
S

f ,y�wnxdS +�
S

f�w,xnydS

�24�

Choosing this symmetric approach and using the common abbre-
viation D=Eh3 /12�1−�2�, the equations of motion follow as

�hu,tt + 2�h��xu,ty − yu,tx� −
6D

h2 ��1 − ��u,yy + �1 + ��v,xy + 2u,xx�

− �h�2�x − x2u,yy + xu,x + 2xyu,xy + yu,y − y2u,xx� = Fx �25a�

�hv,tt + 2�h��xu,ty − yv,tx� −
6D

h2 �1 + ���u,xy + �1 − ��v,xx + 2v,yy�

− �h�2�y − y2v,xx + yv,y + 2xyv,xy + yu,y − x2v,yy + xv,x� = Fy

�25b�

�hw,tt + 2�h��xw,ty − yw,tx� + D�w,xxxx + 2w,xxyy + w,yyyy�

− �h�2�yw,y − x2w,yy + xw,x + 2xyw,xy − y2w,xx�

= Fz − Tx,y + Ty,x �26�

with boundary conditions following from

�uS�
−h/2

h/2

��xxnx + �xyny�dz = �uS	12D

h2 �u,x + �v,y�nx

+
6D�1 − ��

h2 �u,y + v,x�ny
 = 0

�27a�

�vS�
−h/2

h/2

��xynx + �yyny�dz = �vS	6D�1 − ��
h2 �u,y + v,x�nx

+
12D

h2 ��u,x + v,y�ny
 = 0 �27b�

and

�wS�
−h/2

h/2 		1

h
Ty + z�xy,y + z�xx,x
nx

+ 	−
1

h
Tx + z�yy,y + z�xy,x
ny
dz

= �D�w,xyy + w,xxx� − Ty�nx + �D�w,yyy + w,xxy� + Tx�ny = 0

�28a�

�wS,x�
−h/2

h/2

�z�xxnx + z�xyny�dz + �wS,y�
−h/2

h/2

�z�xynx + z�yyny�dz

= �wS,x�w,xx + �w,yy�nx + �wS,y�w,yy + �w,xx�ny = 0 �28b�

By inspection of the boundary value problems �26� and �28� of the
plate �out-of-plane� and the boundary value problems �25� and
�27� of the disk �in-plane� it can be seen that the coupling of the
plate and disk equations depends on Fx, Fy, Fz and Tx, Ty only,
when using the linear deformation gradient. In the linear case for
the pointwise elastic model with no in-plane degree of freedom of
the pad we have

Fi = Fi�u,u,j,u,t,u,jt,v,v,j,v,t,v,jt�, i, j � �x,y� �29a�

Fz = Fz�w,w,j,w,t,w,jt�, j � �x,y� �29b�

Ti = Ti�w,w,j,w,ij,w,t,w,jt�, i, j � �x,y� �29c�

and therefore the plate and disk equations decouple. If second
order terms are considered in the deformation gradient, we obtain
the strain-displacement relations

exx = u,x − zw,xx + 1
2 �u,x

2 + v,x
2 + w,x

2 + z2w,x,y + z2w,xx
2 � + zw,xu,xx

+ zw,yv,xx �30a�

eyy = v,y − zw,yy + 1
2 �u,y

2 + v,y
2 + w,y

2 + z2w,x,y + z2w,yy
2 � + zw,xu,yy

+ zw,yv,yy �30b�

ezz = 0 �30c�

exy = 1
2u,y + 1

2v,x − zw,xy �30d�

+ 1
2 �u,yu,x + v,yv,x + w,yw,x + z2�w,yyw,xy + w,xyw,xx��

+ z�w,xu,xy + w,yv,xy� �30e�

eyz = 0 �30f�
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exz = 0 �30g�

and it is clear that the quadratic terms containing w, u, and v will
yield a coupling of the disk and plate equations after taking the
variation of eij �3�. We note, however, that due to the integration
of the equations over z the coupling occurs only through nonlinear
terms. A second fact to be noted is that, when linearizing the
equations about a prestressed configuration, i.e., �ij =�ij

0 +��ij,
the prestress terms only enter the equations of motion if the non-
linear deformation gradient is used. With the linear deformation
gradient terms of the form �ij

0 �eij vanish in the process of inte-
grating by parts. This is why the effect of centrifugal stiffening �8�
does not appear even when the equations of motion are linearized
about a prestressed configuration. Since we are particularly inter-
ested in small deformations of the plate we continue working with
the linearized strain relations and discuss the influence of centrifu-
gal stiffening in Sec. 4.4.

3.3 Transformation to Polar Coordinates. We will now
transform our equations into polar coordinates, i.e., we will ex-
press the functions u, v, and w and the components of the normal
vector n in polar coordinates. The function w�x ,y , t� and its de-
rivatives can be written in polar coordinates using

�a+b

�xa � ybw�x,y,t� =
�a+b

�xa � ybw̃�r�x,y�,	�x,y�,t� �31�

and noting that r�x ,y�=�x2+y2 and 	�x ,y�=arctan�y /x�. After
carrying out the differentiations we set x=r cos 	 and y=r sin 	.
For u and v we proceed similarly by writing

u�x,y,t� = ũ�r,	,t�cos 	 − ṽ�r,	,t�sin 	 �32a�

v�x,y,t� = ṽ�r,	,t�cos 	 + ũ�r,	,t�sin 	 �32b�

which means that we define a new displacement vector for points
on the neutral plane

uM = ũ�r,	,t�er + ṽ�r,	,t�e	 + w̃�r,	,t�ez �33�

In the following we omit the tilde in ũ�r ,	 , t�, ṽ�r ,	 , t�, and
w̃�r ,	 , t�. There should be no confusion between u�x ,y , t�,
v�x ,y , t�, w�x ,y , t� and ũ�r ,	 , t�, ṽ�r ,	 , t�, w̃�r ,	 , t� since they
can be distinguished by their arguments and by the context.

3.3.1 Contact Forces. The contact forces and torques contain
contributions of the upper and the lower pad, which read

Fr
P = 
�r,	�	− N0w,r − h�N0	 w,tr

2r�
+

w,r	

2r
−

w,	

2r2

+ �N0

��v − u,	� − u,t

r�

 �34a�

Fr
Q = 
�r,	�	N0w,r + h�N0	 w,tr

2r�
+

w,r	

2r
−

w,	

2r2

+ �N0

��v − u,	� − u,t

r�

 �34b�

F	
P = 
�r,	�	− �N0 + k�w −

N0

r
�1 + �2�w,	
 �34c�

F	
Q = 
�r,	�	− �N0 − k�w +

N0

r
�1 + �2�w,	
 �34d�

Fz
P = 
�r,	��N0 − kw� �34e�

Fz
Q = 
�r,	��− N0 − kw� �34f�

and the contact torques are obtained from

TP =
h

2
e� � �Fr

Per + F	
Pe	 + Fz

Pez� �35a�

TQ = −
h

2
e� � �Fr

Qer + F	
Qe	 + Fz

Qez� �35b�

where 
�r ,	� is a weight function describing the area of the pads.
It can be chosen to be a continuous function or, for example, as

�r ,	�=1 if �r ,	��B, i.e., if �r ,	� are in the domain of the pad
�denoted by B to be distinguished from the whole area of the plate
surface denoted earlier by A� and 
�r ,	�=0 otherwise. In prin-
ciple it would be possible to assume that all pad parameters de-
pend on r and 	, to introduce more generality into the model. No
realistic data are, however, currently available on such distribu-
tions from experiments, and for the sake of simplicity we do not
proceed further in that direction. In the linear case the normal
vector reads

e� = − w,rer −
w,	

r
e	 + ez �36�

and it follows that

Fr = Fr
P + Fr

Q = 
�r,	�2�N0
��v − u,	� − u,t

r�
�37a�

F	 = F	
P + F	

Q = − 
�r,	�2�N0 �37b�

Fz = Fz
P + Fz

Q = − 
�r,	�2kw �37c�

Tr = Tr
P + Tr

Q = 
�r,	�	hk�w −
hN0�2w,	

r

 �37d�

T	 = T	
P + T	

Q = 
�r,	�h2N0�	 w,rt

2r�
−

w,	

2r2 +
w,r	

2r

 �37e�

where many terms from the upper and lower pads cancel, so that
the in-plane forces Fr and F	 depend on u and v and their deriva-
tives only, whereas Fz, Tr, and T	 only depend on w and its de-
rivatives. This is the justification for Eq. �29�, which explains the
decoupling of disk and plate equations, as discussed in Sec. 3.2. It
is due to the assumption that the pads do not have a degree of
freedom in the in-plane direction. The dependence of Fr and F	

on u and v comes from the relative velocity of the contact points
on the pad and the plate. If we would give the upper and the lower
pad independent degrees of freedom in the in-plane direction, say,
uP̄ and vP̄ for the upper pad, they would appear in the relative
velocity. Therefore if the in-plane degrees of freedom of the upper
and lower pads are independent, they will appear in Fr, F	 and Tr,
T	 and thus couple the disk and plate equations. Note that in
practice in-plane vibrations are possible and were detected �6�.
The analysis shows that they can either be explained through non-
linear coupling of disk and plate equations or that a linear cou-
pling can arise through in-plane degrees of freedom of the pads,
which also occur in practice.

3.3.2 Plate Equations. Transforming the plate equations into
polar coordinates we obtain

�hw,tt + 2h��w,t	 + �2�hw,		 +
D

r4 �4w,		 + w,				�

+
D

r3 �w,r + 2w,r		� +
D

r2 �2w,rr		 − w,rr� + 2
D

r
w,rrr + Dw,rrrr

= Fz −
1

r
Tr,	 + T	,r �38�

where the transformed natural boundary operators read

Vw = Vr
wer + V	

we	 �39a�
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Vr
w = − M	 +

2D

r3 w,		 +
D

r2 �w,r − w,r		� −
D

r
w,rr − Dw,rrr

�39b�

V	
w = Mr −

D

r3w,			 −
D

r2w,r	 −
D

r
w,rr	 �39c�

and

M = Mrer + M	e	 �39d�

Mr = −
D

r2 �1 − ��w,	 +
D

r
�1 − ��w,r	 �39e�

M	 =
D�

r2 w,		 +
D�

r
w,r + Dw,rr �39f�

For the annular plate, clamped at the inner and free at the outer
radius, we obtain the geometric boundary conditions w �r=ri

=0 and
w,r �r=ri

=0, and the natural boundary conditions Vr �r=ro
=0 and

Mr �r=ro
=0.

3.3.3 Disk Equations. The boundary value problem for the
disk in polar coordinates reads

�h
1 0

0 1
�
ü

v̈
� + �
2

�N0

r�
+ 2��h

�

�	
− 2��h

2��h 2��h
�

�	
�
u̇

v̇
�

+ 
L11 L12

L21 L22
�
u

v
� = 
 �h�2r

− 
2�N0
� �40�

�where as before 
=
�r ,	�� with the linear operators

L11 = −
Eh

1 − �2	 �2

�r2 +
1

r

�

�r
−

1

r2 +
1 − �

2r2

�2

�	2
 − �h�2	1 −
�2

�	2

+ 
2

�N0

r

�

�	
�41a�

L12 = −
Eh

1 − �2	1 + �

2

1

r

�2

�r � 	
−

3 − �

2

1

r2

�

�	

 − 2�h�2 �

�	

− 
2
�N0

r
�41b�

L21 = −
Eh

1 − �2	1 + �

2

1

r

�2

�r � 	
+

3 − �

2

1

r2

�

�	

 + 2�h�2 �

�	

�41c�

L22 = −
Eh

1 − �2	1 − �

2
	 �2

�r2 +
1

r

�

�r
−

1

r2
 +
1

r2

�2

�	2

− �h�2	1 −

�2

�	2
 �41d�

and the natural boundary operators

Vu,v = Vr
u,ver + V	

u,ve	 �42a�

Vr
u =

1

1 − �2
u,r + �	u

r
+

1

r
v,	
� �42b�

Vr
v =

1

2�1 + ��
1

r
u,	 + v,r −

v
r
� �42c�

V	
v =

1

2�1 + ��
1

r
u,	 + v,r −

v
r
� �42d�

V	
v =

1

1 − �2
u

r
+

1

r
v,	 + �u,r� �42e�

For the annular disk clamped at the inner radius ri and free at the
outer radius ro we have the geometric boundary conditions u �r=ri

=v �r=ri
=0 and the natural boundary conditions Vr

u �r=ro
=Vr

v �r=ro
=0. For �=0, that is, neglecting Fr and F	, the boundary value
problem coincides with the one derived in Ref. �16�. Equations
�40� and �42� form a linear inhomogeneous boundary value prob-
lem of which the solution is given by the general solution of the
homogeneous boundary value problem plus a particular solution.
Its stability can be studied investigating the stability of the trivial
solution of the homogeneous boundary value problem.

3.4 Comparison to the Results Obtained Previously. In
comparison to the results obtained in Ref. �13� using the Ritz
discretization approach, two major differences shall be discussed.
The first one is that in the continuous approach we use surface
contact between disk and pads. The reason for this is that the
Kirchhoff plate cannot deal with finite torques applied at points. A

finite torque T̂= T̂xex+ T̂yey applied at a single point �xa ,ya� of the
plate appears in the principle of virtual work as a term

�W = T̂x�wy�xa,ya,t� − T̂y�wx�xa,ya,t� �43�
After carrying out the variations there is no further term contain-
ing �wx�xa ,ya , t� or �wy�xa ,ya , t�, since in �eij no term of the form
�w,xyy or �w,xxy arises. Therefore one would conclude from the

main theorem of variational calculus that T̂=0, which is a contra-
diction. The Kirchhoff plate can therefore not resist finite torques
applied at points. It is, however, very well able to resist finite
transverse forces applied at points. Their contribution to the vir-
tual work is

�W = F̂z�w�xa,ya,t� �44�

Further terms containing �w�xa ,ya , t� arise from integration by
parts of the term �22�, yielding conditions for corner forces of
different sections of the plate.

The second fact to be noted is that we used a strategy for
linearization different from the one used in Ref. �13�. Whereas in
Ref. �13� energy expressions were expanded in a Taylor series up
to second order, to be sure to obtain the complete linear equations,
in the boundary value problem derived in the present case only the
linear contact forces appear, because a purely geometric lineariza-
tion has been performed. The terms �xP and �yP therefore do not
enter the equations of motion as explained in Sec. 2.1 with Eq.
�14�.

Another difference is that we got rid of the kinematic assump-
tion that points on the neutral plane can only move transversely in
the rotating frame, allowing for in-plane deformations of the plate.
Nevertheless we again stress that this does not yield a term de-
pending on u and v in the linearized contact forces, which would
mean plate and disk equations cannot be solved independently.

Summarizing the previous results, we note that the boundary
value problems of the plate and disk are decoupled as long as no
in-plane motions of the pads are considered in the model. Further-
more a centrifugal stiffening cannot arise in the equations of mo-
tion when working with the linear deformation gradient. We have
also recalled the well known fact from Kirchhoff theory that the
plate is not capable to withstand finite torques �see, e.g., Ref.
�17��.

4 Perturbation Analysis
We now interpret the terms arising from the pads as perturba-

tions, i.e., in Eqs. �38� and �39� and Eqs. �40� and �42� we replace
k with �k, and N0 with �N0. For the following calculations we
introduce the dimensionless time t̄= t /ro

�E /� and the radius r̄
=r /ro yielding the dimensionless parameters
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�̄ = �ro��

E
, r̄i =

ri

ro
, r̄pi =

rpi

ro
, r̄po =

rpo

ro
�45�

h̄ =
h

ro
, k̄ = k

ro

E
, N̄0 =

N0

E
, D̄ =

h̄3

12�1 − �2�
�46�

To simplify notation, in the following the bars are omitted and
derivatives are to be understood as derivatives with respect to the
dimensionless variables. It will be shown in the sequel that by
separating time from the equations, the boundary value problems
for the plate and the disk can be written in the form

L�w� = L0�w� + �L1��w� + �L1��w� = 0 �47a�

Ui�w� = Ui
0�w� = 0 �47b�

where we denote by L the operator matrix corresponding to the
eigenvalue problem and Ui are operator matrices corresponding to
the boundary conditions. In the plate problem we set w�r ,	 , t�
= w̄�r ,	�e�t, where we again skip the bar for notational simplicity.
The boundary value problem can be stated as

L0�w� = �2w + 2��w,	 + �2w,		 +
D

r4 �4w,		 + w,				� +
D

r3 �w,r

+ 2w,r		� +
D

r2 �2w,rr		 − w,rr� + 2
D

r
w,rrr + Dw,rrrr �48a�

L1��w� = 
�r,	�2kw − 	
�r,	�
hk�w

r



,	
�48b�

L1��w� = − 	
�r,	�h2N0�	�
w,rt

2r�
−

w,	

2r2 +
w,r	

2r




,r

�48c�

with boundary conditions

U1 = w�ri,	,t� = 0, U2 = w,r�ri,	,t� = 0 �49�

U3 = Vr
w�r=ro

= 0, U4 = Mr�r=ro
= 0 �50�

where the operators for the differential equation and the boundary
conditions act on the scalar function w and are therefore not rep-
resented by bold characters. In case 
�r ,	� is chosen as a discon-
tinuous function, we note that L1� and L1� contain transition
terms. In the perturbation formulas derived later, they can easily
be eliminated by integration by parts. There are no perturbations
in the boundary condition �47b�; the boundary conditions of the
perturbed problem therefore coincide with those of the unper-
turbed problem.

For the disk we perform the ansatz of separation of variables


u�r,	,t�
v�r,	,t� � = 
ū�r,	�

v̄�r,	�
�e�t = we�t �51�

for simplicity skipping the bar for u and v; this yields the opera-
tors

L0�w� = ��2
1 0

0 1
� + ��2�

�

�	
− 2�

2� 2�
�

�	
� + 
L11

0 L12
0

L21
0 L22

0 ��
u

v
�

�52a�

L1��w� = 0 �52b�

L1��w� = 
�r,	����2�N0

r�
0

0 0
� + �2�N0

r
−

2�N0

r

0 0
��
u

v
�
�52c�

where

L11
0 = −

1

1 − �2	 �2

�r2 +
1

r

�

�r
−

1

r2 +
1 − �

2r2

�2

�	2
 − �2	1 −
�2

�	2

�53a�

L12
0 = −

1

1 − �2	1 + �

2

1

r

�2

�r � 	
−

3 − �

2

1

r2

�

�	

 − 2�2 �

�	

�53b�

L21
0 = −

1

1 − �2	1 + �

2

1

r

�2

�r � 	
+

3 − �

2

1

r2

�

�	

 + 2�2 �

�	

�53c�

L22
0 = −

1

1 − �2	1 − �

2
	 �2

�r2 +
1

r

�

�r
−

1

r2
 +
1

r2

�2

�	2
 − �2	1 −
�2

�	2

�53d�

and the natural boundary conditions read

U1�w� = 
1 0

0 1
��
u�r,t�

v�r,t� ��r=ri

= 0 �54a�

U2�w� = �
�

�r
+ �

1

r

1

r

�

�	

1

r

�

�	

�

�r
−

1

r
��
u�r,t�

v�r,t� ��r=ro

= 0 �54b�

We assume that the parameters � and � are smooth functions of a
parameter 
. This corresponds to a variation along a smooth curve
parametrized by 
 in the parameter space �14,15�. It is possible to
expand ��
� and ��
� around 
=0 assuming that ��0�=��0�=0,
for example,

��
� = �,
�0�
 + ¯ = �1
 + ¯ �55�

��
� = �,
�0�
 + ¯ = �1
 + ¯ �56�

Assuming this kind of perturbation we write the perturbed bound-
ary value problem up to first order in 
 as

L�w� + 
L1
�w� = 0 �57�

Ui�w� = 0 �58�

where L1
=�1L1�+�1L1�.
According to Refs. �18,15,14�, for a simple eigenvalue �0 and

the corresponding eigenfunction u, we set

w = u + 
w1

 + ¯ �59�

� = �0 + 
�1

 + ¯ = �0 + 
��1�1

� + �1�1
�� + ¯ �60�

Substitution into Eq. �57�, taking the scalar product with the
eigenfunction v of the adjoint of the unperturbed problem, and
collecting the terms linear in 
 yield

�1

 = −

�L1
�u�,v�

� �L0

��
�u�,v� �61�

where �u ,v�=�Av�udA, the asterisk denotes complex conjugate
transpose.
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For a semisimple eigenvalue �0 of the unperturbed problem, a
double eigenvalue with two linearly independent �matrix� eigen-
functions, with corresponding eigenfunctions u1 and u2 substitut-
ing u=�1u1+�2u2 in Eq. �59� and collecting terms linear in 

yields �15�

L1
��1u1 + �2u2� + �1

�L0

��0
��1u1 + �2u2� = 0 �62�

The scalar product with the corresponding two eigenfunctions v1
and v2 of the adjoint of the unperturbed problem yields

��L1
�u1�,v1� + �1

� �L0

��
�u1�,v1� �L1
�u1�,v2� + �1


� �L0

��
�u1�,v2�

�L1
�u2�,v1� + �1

� �L0

��
�u2�,v1� �L1
�u2�,v2� + �1


� �L0

��
�u2�,v2� �
�1

�2
� = 0 �63�

For nontrivial solutions in �1 and �2, the determinant of the ma-
trix has to vanish, which yields �1


. An analogous formula describ-
ing the splitting of a semisimple eigenvalue of multiplicity r

det
�L1
uk,v j� + �1

� �L0

��
uk,v j�� = 0, j,k = 1, . . . ,r �64�

generalizes the result derived for scalar differential operators in
Ref. �15� to the case of operator matrices. We note that the ap-
proach based on the perturbation theory of multiple eigenvalues
�19� differs from that used in Ref. �20� and allows one to study the
phenomena of veering and overlapping of eigenvalue branches
with the use of operator derivatives and eigenvectors of a multiple
eigenvalue calculated only for the values of parameters corre-
sponding to coalescence of eigenvalues.

4.1 Spectrum of the Unperturbed Problem

4.1.1 Plate. We investigate the unperturbed boundary eigen-
value problem of the plate

L0�w� = 0 �65�

Ui�w� = 0, i = 1, . . . ,4 �66�

and expand w in terms of the eigenfunctions of the corresponding
nonrotating plate, that is, �=0,

w�r,	,t� = �
i=0

�

�Wi
c�r,	�qi

c�t� + Wi
s�r,	�qi

s�t�� �67�

The boundary eigenvalue problem obtained after separation of
time for the nonrotating annular plate in dimensionless form reads

�4W�r,	� =
h

D
�mn

2 W�r,	� �68�

W�ri,	� = 0, W,r�ri,	� = 0 �69�

Mr�ro,	� = 0, Vr�ro,	� = 0 �70�

where Vr and Mr are given in Eqs. �39b� and �39e�, respectively.
According to Ref. �21�, the eigenfunctions are

Wi
c�r,	� = Rmn�r�cos m	, m = 0, . . . ,�, n = 1, . . . ,�

Wi
s�r,	� = Rmn�r�sin m	, m = �, . . . ,0, n = �, . . . ,1

where the Rmn�r�=C1I��mnr�+C2J��mnr�+C3Y��mnr�
+C4K��mnr� are linear combinations of Bessel and modified
Bessel functions, and the constants C1 , . . . ,C4 are determined
from the linear equation after substitution of the ansatz into the
boundary conditions �69� and �70�. The quantities �mn

=�4 �h /D��mn
2 are the roots of the characteristic equation resulting

from equating the determinant of the matrix of the linear system

to zero. The numbers �m ,n� denote the number of nodal diameters
and nodal circles of the plate. Since the plate is clamped at the
inner radius, numeration of nodes n starts from n=1. The func-
tions Wi

c�r ,	� corresponding to m=0 are umbrella modes of the
plate. The eigenfunctions for the nonrotating annular plate are
known to form a complete orthogonal base for the problem of the
rotating plate. We now project the problem of the rotating plate
onto the eigenfunctions of the nonrotating plate, i.e., we write

�
A

L0�w�Wj
cdA =�

A

L0	�
i=0

�

�Wi
cqi

c + Wi
sqi

s�
Wi
cdA = 0 �71�

�
A

L0�w�Wj
sdA =�

A

L0	�
i=0

�

�Wi
cqi

c + Wi
sqi

s�
Wi
sdA = 0 �72�

Equations �71� and �72� form an infinite dimensional matrix equa-
tion of the type

�M�2 + G� + K�q = 0, q = �q1
c, . . . ,q�

c ,q�
s , . . . ,q1

s�T

Using this and the orthogonality relations for the trigonometric
functions sin and cos and the orthogonality of the eigenfunctions
of the nonrotating plate we find that the matrices of the unper-
turbed problem read

M = diag�Mmn� �73�

G = antidiag�2mMmn�,− 2mMmn�� �74�

K = diag��mn
2 Mmn − m2Mmn�2� �75�

where Mmn=h��ri

roRmn
2 �r�rdr. Consequently, the equations of mo-

tion of the unperturbed problem decouple into infinitely many
pairs of two coupled equations of the form


1 0

0 1
�q̈ + 
 0 − 2m�

2m� 0
�q̇ + 
�mn

2 − m2�2 0

0 �mn
2 − m2�2 �,

q = 0, m � 0 �76�

where we divided it by Mmn. The spectrum of the unperturbed
problem, namely, the eigenvalues of Eq. �76�, can be calculated
analytically as

�1� = � i��mn + m�� �77a�

�2� = � i��mn − m�� �77b�

and form the geometric structure called a spectral mesh in Ref.
�22� depicted in Fig. 5 for the dimensionless parameters
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h = 0.1605, D = 3.7858 � 10−4, ri = 0.154, � = 0.3

�78�

which are based on the parameters for a disk brake used in Ref.
�13�. They correspond to a brake rotor represented by an equiva-
lent Kirchhoff plate with ro=0.162 m, E=4.16�1010 N /m, and
�=4846 kg /m3. These parameters were identified in Ref. �23� at
the test rig. For numerical calculations we use the parameters of
the corresponding disk brake throughout the paper. We emphasize
at this point that for the problem of brake squeal only angular
velocities up to 4000 rpm are physically relevant, which corre-
sponds to a dimensionless �=2.3�10−2. In other applications
much larger dimensionless angular velocities arise.

The horizontal lines in Fig. 5 for m=0 are umbrella modes of
the plate. The spectrum of the reduced two-dimensional system
corresponding to m�0 is simple, except at the critical velocities

�1
c = 0, �1

c� = � i�mn

�2
c =

1

m
�mn, �2

c� = 0

where it is seen to be semisimple by calculating the corresponding
eigenvectors. Note that additional crossings of eigenvalues occur-
ring in the spectrum are semisimple as well, which follows from
the decoupling of the matrices. Qualitatively it agrees with other
results obtained in literature especially with the observation made
in Ref. �24�.

4.1.2 Disk. The spectrum for the unperturbed problem of the
disk was calculated by Chen and Jhu in Ref. �16� using Lame
potentials. Since it is numerically difficult to solve the character-
istic equation, in this paper we prefer to calculate the spectrum
using a Ritz discretization approach. The results obtained with the
Ritz method have been validated by comparison to the results in
Refs. �25,16�. The energy expressions from Eq. �19� correspond-
ing to the disk equations are discretized using

u�r,	� = �
m=0

m̂

�
n=1

n̂ 
sin	n��r − ri�
2�ro − ri�


cos m	�qmn
uc �t�

+ �
m=1

m̂

�
n=1

n̂ 
sin	n��r − ri�
2�ro − ri�


sin m	�qmn
us �t� �79�

v�r,	� = �
m=0

m̂

�
n=1

n̂ 
sin	n��r − ri�
2�ro − ri�


cos m	�qmn
vc �t�

+ �
m=1

m̂

�
n=1

n̂ 
sin	n��r − ri�
2�ro − ri�


sin m	�qmn
vs �t� �80�

which can be seen to form a base for the problem, since they
satisfy the geometric boundary conditions and since the trigono-
metric functions are known to be complete. Carrying out the
variations in Eq. �19� over the functions qmn

ij , we obtain the equa-
tions of motion

Mq̈ + Gq̇ + Kq = 0 �81�

of the unperturbed problem, where M and K are symmetric and G
is skew-symmetric. The corresponding eigenvalue problem reads

�M�2 + G� + K�
u

v
� = 0 �82�

where

u = �q01
uc,q01

us , . . . ,qm̂n̂
uc ,qm̂n̂

us �T �83�

v = �q01
vc,q01

vs, . . . ,qm̂n̂
vc ,qm̂n̂

vs �T �84�

and yields the spectrum depicted in Fig. 6.
At �=0.28 the �0,1� eigenform of the system loses stability by

divergence �we use again the notation �m ,n�, where as for the
plate m denotes the number of nodal diameters and n denotes the
number of nodal circles�. The system exhibits flutter at �=1.2.

4.2 Perturbation Formulas. For the following perturbation
formulas we introduce the dimensionless parameters

r̄pi = 0.5988, r̄po = 0.9444, 	p = 0.7

k̄ = 0.0093, N̄0 = 6.4669 � 10−6, � = 0.6

corresponding to a real disk brake �26,13�. We again skip the bar
in the following for notational convenience. The weight function
corresponding to the pads is chosen such that 
�r ,	�=1 if �r ,	�
�B, i.e., if �r ,	� are in the domain of the pad �denoted by B to be
distinguished from the whole area of the plate surface denoted
earlier by A� and 
�r ,	�=0 otherwise.

4.2.1 Plate. Expanding the perturbed eigenfunctions of the
plate in terms of the eigenfunctions of the nonrotating plate and
projection onto themselves yields

�M�2 + �G + ��G� + ��G��� + K + ��K� + ��K��u = 0

�85�

where M, G, and K have been derived in Sec. 4.1.1 and

�Gij
� = 0 �86a�

Ω

� λ

(4, 1)

(0, 2)
(3, 1)

(2, 1)

(1, 1)

(0, 1)

0 0.1 0.2
0

0.5

1

Fig. 5 Spectrum of the out-of-plane vibrations of the unper-
turbed problem „plate… for ri=0.154 „spectral mesh…
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Fig. 6 Spectrum of the in-plane vibrations of the unperturbed
problem „disk… for ri=0.153
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�Gij
� =�

B

h2N0�

2r�
W,r

i W,r
j dB �86b�

�Kij
� =�

B


2kWiWj −
hk�

r
W,	

i Wj�dB �86c�

�Kij
� =�

B


�2hN0

r2 W,	
i W,	

j −
h2N0�

2r2 W,r
i W,	

j +
h2N0�

2r
W,r

i W,r	
j �dB

�86d�

are the perturbation matrices. Note that we have used integration
by parts in some of the integrals and thereby eliminated transition
terms originating from the discontinuity of the weight function

�r ,	�. The matrices �86� are similar to the expressions one
would have obtained from the Ritz discretization used in Ref. �13�
taking into account an arbitrary number of shape functions. How-
ever, due to the reasons discussed in Sec. 3.4, the expressions
obtained from the Ritz discretization contain a few more terms in
�Kij

� and �Kij
� , which read

�Kij
� =�

B


2kWiWj −
hk�

r
W,	

i Wj�dB �87�

�Kij
� =�

B


�1 + �2�
hN0

r2 W,	
i W,	

j −
h2N0�

2r3 W,		
i W,	

j

+
h2N0�

2r2 �W,	
i W,r

j − W,r
i W,	

j � + hN0W,r
i W,r

j

+
h2N0�

2r
�W,r

i W,r	
j − W,	r

i W,r
j ��dB �88�

It can be seen numerically that the additional terms are so small
that they have practically no influence on the results.

The perturbation matrices are split into a symmetric and a
skew-symmetric part

�G�,� = G�,� + D�,�, G�,� = − �G�,��T, D�,� = �D�,��T

�K�,� = K�,� + N�,�, K�,� = �K�,��T, N�,� = − �N�,��T

Using formula �61� for simple eigenvalues, we arrive at the
expression

�1
� =

− �0uT�G�u − uT�K�u

2�0uTMu + uTGu
=

�2uT�G�u − i�uT�K�u

uT�− M�2 − K�u
=

�2�aTD�a + bTD�b� + 2�aTN�b + i�2�2aTG�b + ��aTK�a + bTK�b��
aT�− M�2 − K�a + bT�− M�2 − K�b

�89�

where a and b are the real and imaginary parts of the eigenvector
u0. To calculate �1

� just replace � with �. From Eq. �89� we ob-
serve that for small � and � the stability behavior is determined by
D�,� and N�,� only. Due to the decoupling of the equations for the
unperturbed problem, only the 2�2 matrices having the same
position in the perturbation matrices as the blocks corresponding
to the eigenvalue of the unperturbed problem are relevant for the
first term in the expansion of �. The zeros in the corresponding
eigenvector of the unperturbed problem suppress the influence of
other terms. For the semisimple eigenvalues, more terms are rel-
evant for the splitting of the double eigenvalue. From Eq. �63� it
follows that �1


 is determined from

det
c1�1

 + a b

c c2�1

 + d

� = 0 �90�

where

c1 = 2�0u1
TMu1 + u1

TGu1 �91a�

c2 = 2�0u2
TMu2 + u2

TGu2 �91b�

a = − �0u1
T�G
u1 − u1

T�K
u1 �91c�

b = − �0u1
T�G
u2 − u1

T�K
u2 �91d�

c = − �0u2
T�G
u1 − u2

T�K
u1 �91e�

d = − �0u2
T�G
u2 − u2

T�K
u2 �91f�

We obtain

�1

 =

− �dc1 + ac2� � ��dc1 − ac2�2 + 4c1c2cb

2c1c2
�92�

which shows that in the generic case, when the expression under
the square root does not vanish, avoided crossings of imaginary

parts and imperfect merging of modes occur as depicted in Fig. 7,
where we used the �=3 and �=3 for the pads. Since

��K��F

�K0�F
= 0, 0491,

��G��F

�K0�F
= 0,

��K��F

�K0�F
= 1.618 � 10−6

��G��F

�K0�F
=

1.306 � 10−6

�
, K0 = K��=0

where � · �F stands for the Frobenius norm, even the perturbations
��K�+��K� and ��G�+��G� can be considered small for speed
ranges not too close to �=0 �cf. also Fig. 11�.
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Fig. 7 Spectrum of the perturbed plate problem for �=�=3.
Dashed lines: unperturbed problem; lower plot: zoom for small
Ω.
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Generic pictures for avoided crossings have been derived in
Ref. �27� for the matrix case. In our case they look similar, except
for the fact that we have a vanishing real part for all eigenvalues
in the unperturbed problem. We see that the combined action of
the dissipative and nonconservative positional forces moves some
of the eigenvalues to the right side of the complex plane for the
values of � not exceeding the first critical speed. For the param-
eters considered in Fig. 7 the system gets unstable at a dimension-
less �=2.7�10−4, which for the physical disk brake studied cor-
responds to an angular velocity of about 46 rpm. Therefore, the
application of the brake pads to the disk can cause flutter instabil-
ity in the subcritical range, which is typical for squeal.

4.2.2 Disk. According to Eq. �61�, for simple eigenvalues of
the unperturbed problem the first term in the expansion �60� reads

�1

 =

�
B


2�N0h

r�
ūu +

2�N0h

r
ūu −

2�N0h

r
ūv�dB

�
A

�2��uū + vv̄� + 2��ū�u,	 − v� + v̄�u + v,	���dA

�93�

Substituting the eigenfunctions obtained from the Ritz method u
=Uu and v=Vv, where U and V are row matrices containing the
shape functions for u and v, and �uT ,vT�T is the eigenvector cor-
responding to Eq. �82�, yields

�1

 =

− �0�uT vT ��G�
u

v
� − �uT vT ��K�
u

v
�

2�0�uT vT �M
u

v
� + �uT vT �G
u

v
� �94�

which coincides with the perturbation formulas one would have
obtained by perturbing the discretized eigenvalue problem �82�.
The first correction terms from Eq. �60� for simple eigenvalues of
the perturbed disk problem are shown in Fig. 8 for the real part.

We observe that in the range below the first critical speed
Re��1


� is strictly negative. For �→0 the real parts become infi-
nite, which can be explained by the term proportional to 1 /� in
the damping matrix. For the semisimple eigenvalues we expect
the same behavior, since the eigenvalues of a matrix polynomial
depend continuously on the matrix entries.

4.3 Stability Boundaries. In Sec. 4.2.1 we derived formulas
for the change in simple and semisimple eigenvalues occurring in
the spectrum of the unperturbed plate problem caused by small
changes in the parameters. For a fixed rotational speed of the
plate, the stable region in the parameter plane � ,� is given by
those areas where all eigenvalues of the problem have a nonposi-

tive real part. For each simple purely imaginary eigenvalue of the
unperturbed problem � j there is a stable region, which in the first
approximation is the half plane

� Re��1
j�� + � Re��1

j�� � 0, ∀ j �95�

At a fixed rotational speed �, where all eigenvalues are simple,
the stability region in the � ,� plane is given by the intersection of
the half-planes defined in Eq. �95�. Depending on the parameters,
it can be a sector limited by an angle, a line �for
Re��1

1�� /Re��1
1��= ¯ =Re��1

n�� /Re��1
n��� or just the point �=�

=0. Approximations to the stability boundary therefore coincide
with the lines

� = −
Re��1

1��
Re��1

1��
� = −

��aTD�a + bTD�b� + 2aTN�b

��aTD�a + bTD�b� + 2aTN�b
� �96�

Again, recall u=a+ ib. For the two-dimensional system of the
plate corresponding to its �3,1� mode, the stability boundaries are
depicted in Fig. 9, where only the areas with positive � and � are
physically meaningful.

From Fig. 9 one expects that for �→0 the stable region coin-
cides with the half plane �=0,��0 and for �→� the stable
region is a line. It is not difficult to verify this analytically.

Consider the case �→0. In this case d11
� →� and consequently

in Eq. �96� the numerator tends to infinity since always two eigen-
vectors of the unperturbed system with nonvanishing first compo-
nent of a or b can be found �the eigenvectors of a purely gyro-
scopic system span the solution space provided that M and K are
positive definite�. The stability boundary is therefore given by �
=0.

Now consider the case �→�. We will show that in the limit
the eigenvectors corresponding to the pairs of eigenvalues �76�
coincide and Eq. �96� yields the same expression for each eigen-
value. We note that for increasing � the relative difference be-
tween �1 and �2 tends to zero, i.e.,

lim
�→�

�� = lim
�→�

�1 − �2

�1 = 0 �97�

as we can see from Eq. �76�. Consider the matrix A describing Eq.
�76� written as a first order system with eigenvectors v1 and v2
corresponding to �1 and �2, i.e.,

Av1 = �1v1 �98�

Av2 = �2v2 �99�
Using Eq. �97� we obtain

Ω

� λε
1[10−5]

0 0.1 0.2
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0

Fig. 8 �1
ε for the perturbed disk problem for ri=0.153
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Ω

Fig. 9 Three-dimensional stability boundaries
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A�v1 − v2� = �1�v1 − v2� + ��v2 �100�

A�v2 − v1� = �2	v2 −
1

1 − ��
v1
 �101�

which by addition and taking the limit ��→0 yields

��1 − �2��v1 − v2� = 0 �102�

and hence v1=v2.
From the above reasoning taking into account that the stable

lines for different pairs of eigenvalues have different slopes we
conclude that the system definitely becomes unstable for some �.

A second fact to be observed from Fig. 10 is that in the super-
critical range damping can have a destabilizing effect, which
agrees with the results of Ref. �28�. In view of the Thompson–
Tait–Chetaev theorem �29� this effect is not surprising, although
this theorem is not directly applicable, since the forces originating
from the prestress N0 are not purely dissipative.

We stress that the approximations for the stability boundaries
are only valid for small perturbations. In Fig. 11 they are com-
pared with numerical calculations of the eigenvalues at particular
points in the parameter space. In the vicinity of the unperturbed
problem they are seen to give good approximations.

4.4 The Effect of Centrifugal Stiffening in the Plate
Equations. In this section we discuss how the effect of centrifugal
stiffening enters into the plate vibrations and compare the results
with the ones obtained in Secs. 4.2 and 4.3. Using the assumption
that u,x, u,y, v,x, and v,y occurring in Eq. �29� are of the order of
magnitude of w,x

2 and w,y
2 and neglecting terms containing z2 since

the plate is thin �3� we obtain

exx = u,x − zw,xx + 1
2w,x

2 �103a�

eyy = v,y − zw,yy + 1
2w,y

2 �103b�

ezz = 0 �103c�

exy = 1
2u,y + 1

2v,x − zw,xy + 1
2w,yw,x, �103d�

eyz = 0 �103e�

exz = 0 �103f�

Deriving the equations of motion from the principle of virtual
work under consideration of the prestress of the disk due to the
rotation and transformation into polar coordinates after lineariza-
tion yields

�hw,tt + 2h��w,t	 + �2�hw,		 −
1

r

�

�r
�rh�rr

0 w,r� −
h�		

0

r2 w,		

+ D�4w = Fz −
1

r
Tr,	 + T	,r �104�

where the boundary conditions are as previously given by Eq. �38�
and �rr

0 and �		
0 are the prestresses of the disk in radial and cir-

cumferential directions, which will be calculated in the sequel. We
remark that due to the rotational symmetry of the plate �r	

0 =0.

4.4.1 Calculation of the Prestress. The prestress originating
from the rotation is calculated by finding a stationary solution for
Eq. �40� with 
=0 from which the strain can be calculated. The
prestress can then be found from the stress-strain relations. Due to
the symmetry of the disk it is clear that �rr

0 and �		
0 depend on r

only and that v=0. In dimensionless form the resulting differential
equation reads

	 �2

�r2 +
1

r

�

�r
+ �1 − �2��2 −

1

r2
u = − �1 − �2��2r �105�

with boundary conditions

u�ri
= 0, 	 �

�r
+ �

1

r

u�r=ro

= 0 �106�

The boundary value problem for the ordinary differential equation
�105� with boundary condition �106� coincides with the one ob-
tained in Ref. �30� by linearization of the boundary value problem
obtained using the nonlinear deformation gradient. The general
solution of Eq. �105� is given by

u�r� = C1J1�r��2�1 − �2�� + C2Y1�r��2�1 − �2�� − r �107�

as derived in Ref. �30� where J1 and Y1 are the well known Bessel
functions of the first and second kinds. The constants C1 and C2
are obtained by adjusting Eq. �107� to the boundary condition
�106�. For the dimensionless angular velocity �=0.28 the result-
ing �rr

0 �r� and ���
0 �r� are plotted in Fig. 12 as solid lines.

For small angular velocities � the term proportional to �2 in
Eq. �105� can be neglected. The corresponding result was derived
in Ref. �31� using first order theory, where also the solution for the

δ
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Fig. 10 Stability boundaries in the sub- and supercritical
ranges
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Fig. 12 Prestress due to rotation of the disk „Ω=0.28…
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simplified boundary value problem for the corresponding ordinary
differential equation is given. The prestress can then be calculated
from the stress-strain relations as

�rr
0 �r� = 	a1 +

a2

r2 −
3 + �

8
r2
�2 �108�

�		
0 �r� = 	a1 −

a2

r2 −
1 + 3�

8
r2
�2 �109�

where

a1 = 	1 + �

8

 �3 + �� + �1 − ��	 ri

ro

4

�1 − ��	 ri

ro

2

+ �1 + ��
�110�

a2 = 	1 − �

8

 �3 + ��	 ri

ro

2

+ �1 + ��	 ri

ro

4

�1 − ��	 ri

ro

2

+ �1 + ��
�111�

for the boundary condition �106�. The expression for prestress
given by Eq. �108� is easier to handle in numerical calculations
since � appears polynomially and not as the argument of a Bessel
function as in Eq. �105�. The corresponding prestress is plotted in
Fig. 12 by the dashed lines for �=0.28. Since it is seen from Fig.
12 that for the rotational speeds considered in this paper Eq. �108�
is a very good approximation, all numerical calculations for the
plate are carried out with these equations. For larger � Eq. �108�
is no longer valid and it cannot be used to determine static insta-
bilities as is done in Ref. �30� using Eq. �107�.

4.4.2 Results From the Perturbation Analysis. Performing a
perturbation analysis on the prestressed plate analogous to the
investigations performed in Secs. 4.2 and 4.3 previous sections
one at first has to calculate the spectrum of the unperturbed prob-
lem. The only differences in the unperturbed boundary value
problems are the terms proportional to �rr

0 �r� and ���
0 �r�. Expand-

ing the eigenfunctions of the unperturbed problem in terms of
eigenfunctions of the nonrotating plate as in Eq. �76� and project-
ing onto them one sees by similar argument as in Sec. 4.1 that
equations corresponding to different nodal diameters m will de-
couple. Due to the dependence of �rr

0 �r� and ���
0 �r� on r a further

decoupling does not occur.
The spectrum of the unperturbed problem resulting from the

Ritz approach using the ten lowest eigenmodes of the nonrotating
plate is given in Fig. 13 by the solid lines.

The dashed lines show the spectrum neglecting the influence of
the prestress and one can observe the stiffening effect since the
eigenfrequencies increase. The eigenvalues for the perturbed
problem using the same shape functions in a Ritz approach for the
perturbed problem are shown in Fig. 14.

The perturbation formulas are similar to Eq. �89� but larger
matrices and eigenvectors have to be used since equations corre-
sponding to the same nodal diameter in the unperturbed problem
are coupled. We see that there is no qualitative difference to the
graphs obtained neglecting the prestress. The same holds true for
the stability boundaries; therefore they are not redrawn for the
prestressed case.

5 Nonlinear Analysis
When dealing with linear models, in case of an instability of the

trivial solution, the amplitudes of the vibration become infinite. In
practice this does not happen, since nonlinearities limit the ampli-
tudes. In this section we therefore introduce a nonlinear stiffness
characteristic in the pads and investigate the discretized equations
of motion using the continuation method. We concentrate on the
disk brake model with parameters given in Sec. 4.2. Since it is

observed in the laboratory that the squealing brake rotor almost
vibrates in the first pair of eigenmodes of the nonrotating plate, we
limit the expansion of the solution to these modes, i.e.,

w�r,	,t� = Rmn�r��q1�t�cos m	 + q2�t�sin m	� �112�

where Rmn�r� is the radial component of an eigenfunction of the
corresponding nonrotating plate. As before, the quantities m and n
denote the number of nodal diameters and nodal circles, respec-
tively. Note that all boundary conditions of the rotating plate are
satisfied by the shape functions. The derivation of the equations of
motion made clear that nonlinear kinematics, i.e., using the non-
linear deformation gradient, yields equations that are highly
coupled. Since we expect the amplitude of the disk to be very
small, we stick to the assumption of linear kinematics and assume
that nonlinearities only enter the system through a nonlinear pad
stiffness. Considering this nonlinearity of the pads, the force bal-
ance at the upper brake pad �16� now reads

�NP̄ + RP̄� · ez + N0 − FP̄ = 0 �113�

where
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Fig. 13 Spectrum of the out-of-plane vibrations of the unper-
turbed problem „prestressed plate… for ri=0.154 „spectral mesh…
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Fig. 14 Spectrum of the perturbed plate problem for �=�=3.
Dashed lines: unperturbed problem; lower plot: zoom for small
Ω.
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FP̄ = k1	zP̄ +
h

2

 + sgn	zP̄ +

h

2

k2	zP̄ +

h

2

2

+ k3	zP̄ +
h

2

3

+ k5	zP̄ +
h

2

5

�114�

and the sign function ensures that the stiffness characteristic is
point-symmetric with respect to the prestressed configuration.

Very little is known about the stiffness and damping parameters
of the pads; therefore the minimal model can only be investigated
qualitatively. For a bifurcation analysis using AUTO �32� the stiff-
ness and damping parameters are varied in a physically plausible
range. Depending on the parameters we obtain a subcritical or a
supercritical Hopf bifurcation when increasing the rotational
speed of the disk.

Using the dimensionless stiffness parameters

k1 = 0.0093, k2 = − 1.30 � 105, k3 = 4.69 � 1011,

k5 = 2.21 � 1022 �115�
we obtain the stiffness characteristic shown in Fig. 15 and the
bifurcation diagram in Fig. 16.

The phenomenon of a subcritical Hopf bifurcation has been
observed in the laboratory. When accelerating the disk, squeal
arises only above a certain angular velocity, but when the squeal-
ing brake is decelerated squeal is observed almost until the disk
comes to a complete rest. However, we remark that this charac-
teristic, i.e., the range of speed, is much smaller in the present

model than one would have expected from laboratory experi-
ments. This is most likely due to the fact that a minimal model is
investigated and adjacent parts of the disk brake are not taken into
account. Nevertheless the characteristic effect can be observed in
the phenomenological model �cf. Fig. 16�.

6 Conclusion
This paper investigates the stretching and bending of an annular

Kirchhoff plate in frictional contact with idealized distributed
pads. The model of the pads is rather flexible to be employed in a
variety of problems including clutches. The equations of motion
are derived from the basics of the theory of elasticity and coupling
between disk and plate equations is carefully examined. Under the
assumptions used in this paper, the disk and the plate equations
are decoupled in the linear case. Using perturbation techniques, it
is shown that at least in the subcritical range for parameters of a
brake disk the plate equations determine the stability behavior of
the system. Subcritical flutter instability is observed caused by the
combined action of dissipative and nonconservative positional
forces. Approximations to the stability boundaries of the system
are calculated from the perturbation formulas. The interpretation
of the problem as a perturbation problem provides an effective
tool for the stability analysis.

Finally, a nonlinear analysis of the discretized plate equations is
performed to investigate the influences of the nonlinearities origi-
nating from the friction material. Observations of nonlinearities
made at a squealing disk brake at the test rig, which have not been
investigated in literature, can be verified qualitatively from the
theoretical model using the continuation method.

Although plate and disk equations decouple in the linear case,
i.e., the stability behavior is determined by the plate equations
only, they are coupled through nonlinear terms. An instability in
the plate equations is an instability of the complete system since
the disk equations are excited through nonlinear terms. Conse-
quently the squealing brake will show in- and out-of-plane vibra-
tions as seen from experiments.
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Parametric Resonance of a Two
Degrees-of-Freedom System
Induced by Bounded Noise
The dynamic stability of a two degrees-of-freedom system under bounded noise excitation
with a narrowband characteristic is studied through the determination of moment
Lyapunov exponents. The partial differential eigenvalue problem governing the moment
Lyapunov exponent is established. For weak noise excitations, a singular perturbation
method is employed to obtain second-order expansions of the moment Lyapunov expo-
nents and Lyapunov exponents, which are shown to be in good agreement with those
obtained using Monte Carlo simulation. The different cases when the system is in sub-
harmonic resonance, combination additive resonance, and combined resonance in the
absence of noise, respectively, are considered. The effects of noise and frequency detun-
ing on the parametric resonance are investigated. �DOI: 10.1115/1.2999427�
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1 Introduction
The equations of motion for many engineering problems are of

the general form

q̈i�t� + 2�iq̇i�t� + �i
2q�t� + ��t��i�

j=1

2

kijqj�t� = 0, i = 1,2 �1�

where qi’s are the generalized coordinates, �i and �i are the ith
damping constant and the circular natural frequency, respectively,
and ��t� is a stochastic process describing the excitation.

The sample or almost-sure stability of the trivial solutions of
system �1� is determined by the largest Lyapunov exponent, which
characterizes the average exponential rate of growth of the solu-
tions of system �1� for large t and is defined as

�q�t� = lim
t→�

1

t
log�q�t�� �2�

where q�t�= �q1 , q̇1 ,q2 , q̇2�T and �q�= �qTq�1/2 is the Euclidean
norm. If the largest Lyapunov exponent is negative, the trivial
solution of system �1� is stable with probability 1; otherwise, it is
unstable.

On the other hand, the stability of the pth moment E��q�p� of
the solutions of system �1� is governed by the pth moment
Lyapunov exponent defined by

�q�t��p� = lim
t→�

1

t
log E��q�p� �3�

where E�·� denotes the expected value. If �q�t��p� is negative, then
the pth moment is stable; otherwise, it is unstable almost surely.
The moment Lyapunov exponents are important in obtaining a
complete picture of the dynamic stability of the trivial solution of
system �1�.

The relationship between the sample stability and the moment
stability was formulated by Arnold �1�. The pth moment
Lyapunov exponent �q�t��p� is a convex analytic function in p that
passes through the origin, and the slope at the origin is equal to
the largest Lyapunov exponent �q�t�, i.e.,

�q�t� = lim
p→0

�q�t��p�

p
�4�

Equation �1� represents a number of practical flow-induced vi-
bration problems encountered in aerospace, power, and structural
engineering. Namachchivaya and Vedula �2� used a similar set of
equations to study the stability of a downstream cylinder in the
wake of upstream cylinder arrays. The two degrees-of-freedom
represent the cylinder motions in the lift and the drag directions,
respectively. Their interaction would induce unstable motions at
certain reduced velocities, which are related to �i and kij. More-
over, when the approach flow is turbulent, the coefficients of in-
teraction were modeled by real noise processes, and the stabiliza-
tion effect observed experimentally was explained. For a civil
structure such as a bridge deck, the two degrees-of-freedom usu-
ally represent the bending motion and the torsional motion �3,4�.
Again, the aerodynamic interaction between the two motions
gives rise to unstable motion under certain conditions. The effect
of flow turbulence was also addressed, and it was shown that the
turbulence has a stabilizing or destabilizing effect, depending on
whether it increases or decreases the mean critical wind velocity.
A similar aeroelastic coupling between the translational mode and
the tortional mode can also be found in the flutter of an airfoil �5�.
The flutter speed was found to be decreased by flow turbulence,
especially its longitudinal component, and this change in the flut-
ter point is mainly due to fluid stiffness.

A systematic study of moment Lyapunov exponents is pre-
sented by Arnold et al. �6� for linear Itô systems and by Arnold et
al. �7� for linear stochastic systems under real noise excitations.
Xie �8,9� obtained weak noise expansions of the moment
Lyapunov exponent, the Lyapunov exponent, and the stability in-
dex of a two-dimensional system under real noise excitation and
bounded noise excitation in terms of the small fluctuation param-
eter. In a recent paper, Zhu et al. �10� modeled the vortex shedding
force of a cylinder in a cross-flow as a bounded noise process and
found that parametric instability occurred in the lock-in region.

For a two degrees-of-freedom system, Namachchivaya and
Vedula �2� obtained an asymptotic approximation of the moment
Lyapunov exponent and the Lyapunov exponent with one critical
mode and another asymptotically stable mode driven by a real
noise of small intensity. They showed that the system can be sta-
bilized by real noise. Namachchivaya and Van Roessel �11� stud-
ied two coupled oscillators driven by real noise. They set up the
eigenvalue problem using the perturbation and stochastic averag-
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ing methods, respectively, and obtained an approximation for the
moment Lyapunov exponents of the two degrees-of-freedom sys-
tem. Furthermore, Namachchivaya and Van Roessel �12� deter-
mined the moment Lyapunov exponent of two coupled oscillators
with commensurable frequencies excited by a real noise using a
perturbation method. Li and Lin �4� studied a two degrees-of-
freedom system excited by the bounded noise process. They used
the stochastic averaging method to determine the Lyapunov expo-
nent of the system and thus determined the boundary of stability
of the system.

A systematic presentation of the theory of random dynamical
systems and a comprehensive list of references are provided by
Arnold �13�. The theory and techniques of studying the stability of
stochastic systems are presented in Ref. �14�.

In this paper, a two degrees-of-freedom system under bounded
noise excitation is considered. Depending on the central frequency
of the bounded noise, various types of parametric resonance may
occur in the system. The partial differential eigenvalue problem
governing the moment Lyapunov exponent is established. For
weak noise excitations, a singular perturbation method is em-
ployed to obtain second-order expansions of the moment
Lyapunov exponents. The effects of the bounded noise and the
detuning frequency on the resonance are investigated. The present
paper explores the moment stability as well as the sample stability
of the system and can be considered as an extension of Ref. �4�,
which studied the sample stability of the two degrees-of-freedom
system through the stochastic averaging method. The stochastic
stability of the system, which is in subharmonic resonance, com-
bination additive resonance, and combined resonance when the
excitation is a harmonic function, respectively, is studied. The
numerical results for both the Lyapunov exponents and moment
Lyapunov exponents are obtained by Monte Carlo simulation and
compared with the analytical results to validate the analytical ap-
proach.

2 Formulation
Consider the following two degrees-of-freedom system

q̈1 + 2��1q̇1 + �1
2q1 + ��1�k11q1 + k12q2���t� = 0 �5a�

q̈2 + 2��2q̇2 + �2
2q2 + ��2�k21q1 + k22q2���t� = 0 �5b�

where ��t� is the excitation process, and � is a small parameter
introduced to make the analytical analysis more convenient.

2.1 Deterministic Excitation. If the excitation ��t� is deter-
ministic and harmonic, e.g., ��t�=cos �t, system �5� can be in
parametric resonance depending on the frequency �. When the
central frequency � is not in the vicinities of 2�i or 	�1	�2	, the
system is stable and there is no resonance. If �=2�i, the ith mode
is excited and the system is in subharmonic resonance in the ith
mode. The dynamic stability behavior of the system is the same as
that of a single degree-of-freedom system in the first-order ap-
proximation. If the excitation frequency � is in the vicinities of the
linear combinations of two natural frequencies, i.e., �= 	�1	�2	,
both modes are excited and the system is in combination reso-
nance. See, e.g., Ref. �14�, for details on parametric resonance in
multiple degrees-of-freedom systems.

2.2 Stochastic Excitation. In most practical applications, the
excitation ��t� has to be described by a random process and in
many cases a narrowband process. To consider the effect of noise
on parametric resonance, consider the excitation ��t� as a narrow-
band process, modeled by a bounded noise

��t� = cos 
�t� = cos��t + �1/2�W�t� + ��

in which W�t� is the standard Wiener process, and � is a uniformly
distributed random number in �0,2
� that makes ��t� a stationary

process.
Using the transformation q1=x1, q̇1=�1x2, q2=x3, and q̇2

=�2x4, Eqs. �5a� and �5b� can be written as

ẋ = Ax + ���t�Bx, x � R4 �6�

where

A = 

0 �1 0 0

− �1 − 2��1 0 0

0 0 0 �2

0 0 − �2 − 2��2

�, B = 

0 0 0 0

− k11 0 − k12 0

0 0 0 0

− k21 0 − k22 0
�

Applying the transformation

x1 = e� cos �1 cos �, x3 = e� cos �2 sin �

�7�
x2 = − e� sin �1 cos �, x4 = − e� sin �2 sin �

one can obtain the following set of equations for the logarithm of
amplitude � ��=log�x��, phase variables ��1 ,�2 ,��, and noise
process 


�̇ = �
j=0

1

� jqj��1,�2,�,
� = m�, �̇ = �
j=0

1

� jsj��1,�2,�,
� = m�

�8�

�̇i = �
j=0

1

� jhij��1,�2,�,
� = m�i
, d
 = �dt + �1/2�dW�t�

where

q0��1,�2,�,
� = 0

q1��1,�2,�,
� = 1
4 ��k11 sin 2�1 + k22 sin 2�2� + �k11 sin 2�1

− k22 sin 2�2�cos 2� + ��k12 + k21�sin �+ + �k12

− k21�sin �−�sin 2��cos 
�t� − 1
2 ��1�1 − cos 2�1�

+ �2�1 − cos 2�2�� − 1
2 ��1�1 − cos 2�1� − �2�1

− cos 2�2��cos 2�

h10��1,�2,�,
� = �1

h11��1,�2,�,
� = 1
2 �k11�1 + cos 2�1� + k12�cos �+

+ cos �−�tan ��cos 
�t� − �1 sin 2�1

h20��1,�2,�,
� = �2

h21��1,�2,�,
� = 1
2 �k22�1 + cos 2�2� + k21�cos �+

+ cos �−�cot ��cos 
�t� − �2 sin 2�2

s0��1,�2,�,
� = 0

s1��1,�2,�,
� = 1
4 ��k21 − k12�sin �+ − �k12 + k21�sin �−

+ �k22 sin 2�2 − k11 sin 2�1�sin 2� + ��k12

+ k21�sin �+ + �k12 − k21�sin �−�cos 2��cos 
�t�

+ 1
2 ��1�1 − cos 2�1� − �2�1 − cos 2�2��sin 2�

In the above expressions, �	=�1	�2.
The pth norm of x can be written as P= �x�p= �e��p=ep�. The

Itô equation for P can be derived using the Itô’s lemma

dP = �m�

�

��
+ m�1

�

��1
+ m�2

�

��2
+ m�

�

��

Pdt = pm�Pdt �9�

Applying a linear stochastic transformation

S = T�
,�1,�2,��P, P = T−1�
,�1,�2,��S
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− � � 
 � + �, 0 � �1,2 � 2
, 0 � � �



2

the Itô equation for the transformed pth norm process S can also
be derived using Itô’s lemma

dS = � 1
2��2T

 + �T
 + m�1

T�1
+ m�2

T�2
+ m�T� + mPT�Pdt

+ �1/2�T
PdW �10�

For bounded and nonsingular transformation T�
 ,�1 ,�2 ,��, both
processes P and S are expected to have the same stability behav-
ior. Therefore, T�
 ,�1 ,�2 ,�� is chosen so that the drift term of
the Itô differential equation �10� is independent of the noise pro-
cess 
�t�, the phase processes �1, �2, and �, so that

dS = �Sdt + �1/2�T
T−1SdW �11�
Comparing Eqs. �10� and �11�, it is seen that such a transformation
T�
 ,�1 ,�2 ,�� is given by the following equation:

1
2��2T

 + �T
 + m�1

T�1
+ m�2

T�2
+ m�T� + mPT = �T,

− � � 
 � + �, 0 � �1,2 � 2
, 0 � � �



2
�12�

in which T�
 ,�1 ,�2 ,�� is a periodic function in �1 and �2 of
period 2
 and is bounded when 
→ 	�. Equation �12� defines
an eigenvalue problem of a second-order differential operator with
� being the eigenvalue and T�
 ,�1 ,�2 ,�� the associated eigen-
function. From Eq. �12�, the eigenvalue � is seen to be the
Lyapunov exponent of the pth moment of system �6�, i.e., �
=�x�p�.

3 Weak Noise Expansions of the Moment Lyapunov
Exponent

3.1 Singular Perturbation Expansion. For weak noise exci-
tation, i.e., �=o�1�, perturbation methods can be applied to solve
the partial differential eigenvalue problem �12� for the perturba-
tive expansions of the moment Lyapunov exponent ��p�. Since
the small parameter � appears as a coefficient of the term T

, a
method of singular perturbation �see, e.g., Ref. �15�� must be
applied.

Denote the frequency �=�0+��, where �0 is the central fre-
quency and � is the detuning parameter. Applying the stretching
transformation


 = �1/2� + ��1�1 + �2�2�, � = �−1/2�
 − ��1�1 + �2�2��

in which �1 and �2 are constants, one has

�T

�

=

�T

��

��

�

= �−1/2T�,

�2T

�
2 = �−1T��

�T

��1
=

�T

��1
+

�T

��

��

��1
= T�1

− �−1/2�1T�

�T

��2
=

�T

��2
+

�T

��

��

��2
= T�2

− �−1/2�2T�

Thus, Eq. �12� becomes
1
2�2T�� + �1T�1

+ �2T�2
+ �−1/2��0 − ��1�1 + �2�2��T� + �1/2��

− �1h̄11 − �2h̄21�T� + ��h̄11T�1
+ h̄21T�2

+ s̄1T� + pq̄1T�

= �T, − � � � � + �, 0 � �1,2 � 2
, 0 � � �



2

�13�
where

q̄1��1,�2,�,�� = 1
4 ��k11 sin 2�1 + k22 sin 2�2� + �k11 sin 2�1

− k22 sin 2�2�cos 2� + ��k12 + k21�sin �+ + �k12

− k21�sin �−�sin 2��cos��1/2� + �1�1 + �2�2�

− 1
2 ��1�1 − cos 2�1� + �2�1 − cos 2�2��

− 1
2 ��1�1 − cos 2�1� − �2�1 − cos 2�2��cos 2�

h̄11��1,�2,�,�� = 1
2 �k11�1 + cos 2�1� + k12�cos �+ + cos �−�tan ��

� cos��1/2� + �1�1 + �2�2� − �1 sin 2�1

h̄21��1,�2,�,�� = 1
2 �k22�1 + cos 2�2� + k21�cos �+ + cos �−�cot ��

� cos��1/2� + �1�1 + �2�2�

− �2 sin 2�2s̄1��1,�2,�,��

= 1
4 ��k21 − k12�sin �+ − �k12 + k21�sin �−

+ �k22 sin 2�2 − k11 sin 2�1�sin 2�

+ ��k12 + k21�sin �+ + �k12 − k21�sin �−�cos 2��

�cos��1/2� + �1�1 + �2�2� + 1
2 ��1�1 − cos 2�1�

− �2�1 − cos 2�2��sin 2�

If �0=�1�1+�2�2, then Eq. �13� can be reduced to

1
2�2T�� + �1T�1

+ �2T�2
+ �1/2�� − �1h̄11 − �2h̄21�T�

+ ��h̄11T�1
+ h̄21T�2

+ s̄1T� + pq̄1T� = �T,

− � � � � + �, 0 � �1,2 � 2
, 0 � � �



2
�14�

in which the eigenfunction T is treated as a function of �, �1, �2,
�, and �. Denoting z=�1/2�, the eigenfunction T�� ,�1 ,�2 ,� ,��
becomes Y�� ,z ,�1 ,�2 ,��. It can be shown that

T� = Y� + �1/2Yz, T�� = Y�� + 2�1/2Y�z + �Yzz �15�

Substituting Eq. �15� into Eq. �14� leads to

L�p�Y = ��p�Y, L�p�Y = L0Y + �1/2L1Y + �L2Y �16�

where

L0Y = 1
2�2Y�� + �1Y�1

+ �2Y�2

L1Y = �2Y�z + �� − �1h̄11 − �2h̄21�Y�

L2Y = 1
2�2Yzz + �� − �1h̄11 − �2h̄21�Yz + �h̄11Y�1

+ h̄21Y�2
+ s̄1Y�

+ pq̄1Y�

Expanding the eigenvalue �q�t��p� and the eigenfunction Y�� ,z ,��
yields

�q�t��p� = �
n=0

�

�n/2�n, Y��,z,�1,�2,�� = �
n=0

�

�n/2Yn��,z,�1,�2,��

�17�

where Yn�� ,z ,�1 ,�2 ,�� are periodic functions in �1 and �2 of
period 2
. Substituting Eq. �17� into Eq. �16�, expanding, and
equating terms of the same orders of �1/2 yield

O�1�: L0Y0 = �0Y0

O��1/2�: L0Y1 + L1Y0 = �0Y1 + �1Y0

�18�
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O��1�: L0Y2 + L1Y1 + L2Y0 = �
i=0

2

�iYn−i

O��n/2�: L0Yn + L1Yn−1 + L2Yn−2 = �
i=0

n

�iYn−i, n = 3,4, . . .

3.2 Zeroth-Order Perturbation. The zeroth-order perturba-
tion equation is L0Y0=�0Y0, or

�2

2

�2Y0

��2 + �1
�Y0

��1
+ �2

�Y0

��2
= �0Y0 �19�

Since the moment Lyapunov exponent �q�t��p� passes through the
origin, i.e.,

�q�t��0� = �0�0� + �1/2�1�0� + ��2�0� + ¯ = 0

one obtains �0�0�=�1�0�=�2�0�= ¯ =0. Because Eq. �19� does
not contain p explicitly, �0�0�=0 implies �0�p�=0. Applying the
method of separation of variables and letting

Y0��,z,�1,�2,�� = X0���Z0�z,���01��1��02��2�

Equation �19� becomes

�01�

�01
= a1

�02�

�02
= a2

�2

2

Ẍ0

X0
= − �a1 + a2� = �

Solving the �01��1� equation yields �01��1�=Cea1�1. For
�01��1� to be a periodic function of period 2
, the constant a1
=0 and hence �01��1�=C1. Similarly, a2=0 and �02��2�=C2.
The X0��� equation results in X0���=D0+D1�. For X0��� to be a
bounded function as �→ 	�, it is required that D1=0 and hence
X0���=D0. The zeroth-order perturbation of the eigenfunction is
therefore Y0�� ,z ,�1 ,�2 ,��=Z0�z ,��, where Z0�z ,�� is a function
to be determined.

The adjoint equation of Eq. �19� is

�2

2

�2Y0
�

��2 − �1
�Y0

�

��1
− �2

�Y0
�

��2
= 0 �19��

Employing the method of separation of variables with

Y0
���,z,�1,�2,�� = X0

����Z0
��z,���01

� ��1��02
� ��2�

it is easy to show that

�01
� ��1� =

1

2

, 0 � �1 � 2


�02
� ��2� =

1

2

, 0 � �2 � 2


X0
���� = constant, − � � � � + �

Y0
���,z,�1,�2,�� = Z0

��z,�� �20�

3.3 First-Order Perturbation. Since �0=0, the first-order
perturbation equation becomes

L0Y1 = �1Y0 − L1Y0 �21�

From the Fredholm alternative, for Eq. �21� to have nonzero so-
lutions, it is required that

��1Y0 − L1Y0,Y0
�� = 0 �22�

where Y0
��� ,z ,�1 ,�2 ,�� is the solution �20� of the adjoint Eq.

�19�� of the first-order perturbation equation, and �f ,g� denotes
the inner product of functions f�·� and g�··� defined as

�f ,g� =�
z=−�

+� �
�=−�

+� �
�1=0

2
 �
�2=0

2
 �
�=0



2 f�·�g�· ·�d�d�2d�1d�dz

Since Y0�� ,z ,�1 ,�2 ,��=Z0�z ,��, which leads to L1Y0=0, Eq.
�22� results in �1�p�=0. Equation �21� then becomes L0Y1=0.
Following the same procedure as in Sec. 3.2, it is easy to show
that Y1�� ,z ,�1 ,�2 ,��=Z1�z ,��.

3.4 Second-Order Perturbation. Since �0=�1=0, L1Y1=0,
the second-order perturbation equation becomes

L0Y2 = �2Y0 − L2Y0 �23�

From the Fredholm alternative, for Eq. �23� to have nontrivial
solutions, it is required that

��2Y0 − L2Y0,Y0
�� = 0

which can be written as

�
z=−�

+� �
�=0



2 Z0

��z,����
�1=0

2
 �
�2=0

2
 ��2

2

�2Z0

�z2 + �� − �1ĥ11

− �2ĥ21�
�Z0

�z
+ ŝ1

�Z0

��
+ �pq̂1 − �2�Z0�d�2d�1�d�dz = 0

�24�

Because Eq. �24� is valid for an arbitrary function Z0
��z ,��, it

results in

�
�1=0

2
 �
�2=0

2
 ��2

2

�2Z0

�z2 + �� − �1ĥ11 − �2ĥ21�
�Z0

�z
+ ŝ1

�Z0

��
+ �pq̂1

− �2�Z0�d�2d�1 = 0

which, after performing the integration, leads to

L�p�Z0 = �2Z0 �25�

where

L�p�Z0 =
�2

2

�2Z0

�z2 + �� − �1ĥ11 − �2ĥ21�
�Z0

�z
+ ŝ1

�Z0

��
+ pq̂1Z0

ĥ11 =�
�1=0

2
 �
�2=0

2


h̄11d�2d�1, ĥ21 =�
�1=0

2
 �
�2=0

2


h̄21d�2d�1

ŝ1 =�
�1=0

2
 �
�2=0

2


s̄1d�2d�1, p̂1 =�
�1=0

2
 �
�2=0

2


p̄1d�2d�1

Hence, the second-order perturbation of the moment Lyapunov
exponent �2 is the eigenvalue of a second-order partial differen-
tial eigenvalue problem �25� with the function Z0�z ,�� being the
associated eigenfunction.

Equation �25� can be solved using a double Fourier series.
Since � is defined on the interval �0,
 /2�, the Fourier series for �
should include cos 4n� and sin 4n�, which come from the exten-
sion of the interval from �0,
 /2� to �0,2
� �see, e.g., Ref. �16��.
Hence, the eigenfunction Z0�z ,�� can be expressed as
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Z0�z,�� = CC00 + �
n=1

K

CC0n cos 4n� + �
n=0

K

�
m=1

K

�CCmn cos mz

+ SCmn sin mz�cos 4n� + �
n=1

K

CS0n sin 4n�

+ �
n=1

K

�
m=1

K

�CSmn cos mz + SSmn sin mz�sin 4n� �26�

or, more concisely,

Z0�z,�� = �
n=0

K

�
m=0

K

�CCmn cos mz + SCmn sin mz�cos 4n�

+ �
n=0

K

�
m=0

K

�CSmn cos mz + SSmn sin mz�sin 4n�

�26��

in which SC0n=CSm0=SSm0=SS0n=0, for all values of m and n,
all the other CCmn, SCmn, CSmn, and SSmn are constant coefficients
to be determined. The Fourier series is truncated to include K sine
and cosine terms for the purpose of numerical analysis; when K
→�, the exact result is obtained.

Substituting Eqs. �26�� into �25�, multiplying it by
cos rz cos 4s�, sin rz cos 4s�, cos rz sin 4s�, or sin rz sin 4s�, re-
spectively, and integrating with respect to z from 0 to 2
 and with
respect to � from 0 to 
 /2 yield a set of equations

�
m=0

K

�
n=0

K �
Lmnrs

CCCC Lmnrs
SCCC Lmnrs

CSCC Lmnrs
SSCC

Lmnrs
CCSC Lmnrs

SCSC Lmnrs
CSSC Lmnrs

SSSC

Lmnrs
CCCS Lmnrs

SCCS Lmnrs
CSCS Lmnrs

SSCS

Lmnrs
CCSS Lmnrs

SCSS Lmnrs
CSSS Lmnrs

SSSS
��

CCmn

SCmn

CSmn

SSmn

�
= �2�

CCrs

SCrs

CSrs

SSrs

�,
r = 0,1, . . . ,K

s = 0,1, . . . ,K
�27�

where

Lmnrs
CCCC =�

�=0



2 �

z=0

2


L�p��cos mz cos 4n�� � cos rz cos 4s�dzd�

Lmnrs
SCCC =�

�=0



2 �

z=0

2


L�p��sin mz cos 4n�� � cos rz cos 4s�dzd�

Lmnrs
CSCC =�

�=0



2 �

z=0

2


L�p��cos mz sin 4n�� � cos rz cos 4s�dzd�

Lmnrs
SSCC =�

�=0



2 �

z=0

2


L�p��sin mz sin 4n�� � cos rz cos 4s�dzd�

Lmnrs
CCSC =�

�=0



2 �

z=0

2


L�p��cos mz cos 4n�� � sin rz cos 4s�dzd�

Lmnrs
SCSC =�

�=0



2 �

z=0

2


L�p��sin mz cos 4n�� � sin rz cos 4s�dzd�

Lmnrs
CSSC =�

�=0



2 �

z=0

2


L�p��cos mz sin 4n�� � sin rz cos 4s�dzd�

Lmnrs
SSSC =�

�=0



2 �

z=0

2


L�p��sin mz sin 4n�� � sin rz cos 4s�dzd�

Lmnrs
CCCS =�

�=0



2 �

z=0

2


L�p��cos mz cos 4n�� � cos rz sin 4s�dzd�

Lmnrs
SCCS =�

�=0



2 �

z=0

2


L�p��sin mz cos 4n�� � cos rz sin 4s�dzd�

Lmnrs
CSCS =�

�=0



2 �

z=0

2


L�p��cos mz sin 4n�� � cos rz sin 4s�dzd�

Lmnrs
SSCS =�

�=0



2 �

z=0

2


L�p��sin mz sin 4n�� � cos rz sin 4s�dzd�

Lmnrs
CCSS =�

�=0



2 �

z=0

2


L�p��cos mz cos 4n�� � sin rz sin 4s�dzd�

Lmnrs
SCSS =�

�=0



2 �

z=0

2


L�p��sin mz cos 4n�� � sin rz sin 4s�dzd�

Lmnrs
CSSS =�

�=0



2 �

z=0

2


L�p��cos mz sin 4n�� � sin rz sin 4s�dzd�

Lmnrs
SSSS =�

�=0



2 �

z=0

2


L�p��sin mz sin 4n�� � sin rz sin 4s�dzd�

These equations can be further cast into a generalized linear
algebraic eigenvalue problem of the form

�A − �2
�K�B�X = 0 �28�

where the superscript “�K�” signifies that the Fourier series is
truncated to include K harmonic terms, A and B are matrices of
dimension �2K+1�2� �2K+1�2, and

X = �CC00,CC01, . . . ,CCKK;SC10,SC11, . . . ,SCKK;

CS01,CS02, . . . ,CSKK;SS11,SS12, . . . ,SSKK�T

For system �28� to have nontrivial solutions, the determinant of
the coefficient matrix must be zero, i.e.,

	A − �2
�K�B	 = 0

By solving this generalized eigenvalue problem, the moment
Lyapunov exponent can be determined.

Having obtained an approximate result of the second-order per-
turbation �2

�K� of the moment Lyapunov exponent, an approxima-
tion of the moment Lyapunov exponent is given by

�x�t��p� � ��2
�K� �29�

Using Eq. �4�, an approximation of the Lyapunov exponent can be
easily obtained

�x�t� � ��2
�K�, �2

�K� = lim
p→0

�2
�K�

p
�30�

4 Parametric Resonances

4.1 Subharmonic Resonance. To study the subharmonic
resonance in the first mode, the central frequency of the bounded
noise is taken as �0=2�1. Assuming �1��2 and 2�1��2, the
coefficients in Eq. �25� are given by
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ĥ11 = 1
4k11 cos z, ĥ21 = 0

ŝ1 = 1
8k11 sin 2� sin z + 1

2 ��1 − �2�sin 2�

q̂1 = − 1
8k11�1 + cos 2��sin z − 1

2 ���1 + �2� + ��1 − �2�cos 2��

In fact, this is the singular case in which � approaches zero as
time goes to infinity since only one mode of the system is excited.
Thus, the coefficients are

ĥ11 = 1
4k11 cos z, ĥ21 = 0, q̂1 = − 1

4k11 sin z − �1, ŝ1 = 0

Hence, the eigenvalue problem is reduced to that of a single
degree-of-freedom problem studied by Xie �9�. The eigenvalue
problem can be solved using the Fourier series.

Z0�z� = C0 + �
k=1

N

�Ck cos kz + Sk sin kz� �31�

where C0, Ck, Sk, k=1,2 , . . . ,N, are constant coefficients to be
determined. Following the same procedure shown in Sec. 3, the
moment Lyapunov exponent can be determined. Hence, the
Lyapunov exponent can be evaluated from Eq. �4�, which is
shown in Fig. 1.

For the numerical simulation, the original equation can be dis-
cretized using the Euler scheme for iterations n=0,1 ,2 , . . .,

x1
n+1 = x1

n + �1x2
n · �t

x2
n+1 = x2

n + �− �1x1
n − 2��1Y2

n − � cos 
n�k11x1
n + k12x3

n�� · �t

x3
n+1 = x3

n + �2x4
n · �t

x4
n+1 = x4

n + �− �2x3
n − 2��2x4

n − � cos 
n�k21x1
n + k22x3

n�� · �t


n+1 = 
n + � · �t + �1/2� · �Wn

These equations can be simulated iteratively and the numerical
algorithm for determining the Lyapunov exponents �17� can be
applied to evaluate �x�t�. In the Monte Carlo simulation, the time
step is chosen as �t=10−6, the frequencies are �1=1 and �2=4,
and the number of iterations is 2�109. A comparison of the

Lyapunov exponents �x�t� obtained by perturbation and Monte
Carlo simulation, as shown in Fig. 1, reveals that there is an
excellent agreement between the two results. The moment
Lyapunov exponents �2 are shown in Fig. 2 for �=1.0.

4.2 Combination Additive Resonance. To study the combi-
nation additive resonance, the central frequency of the bounded
noise is taken as �0=�1+�2. Assuming �1��2, the coefficients
in Eq. �25� are given by

ĥ11 = 1
4k12 cos z tan �, ĥ21 = 1

4k21 cos z cot �

ŝ1 = − 1
8 ��k21 − k12� + �k12 + k21�cos 2��sin z + 1

2 ��1 − �2�sin 2�

q̂1 = − 1
8 �k12 + k21�sin 2� sin z − 1

2 ���1 + �2� + ��1 − �2�cos 2��

Note that k11 and k22 do not appear in the above coefficients,
which means that they have no influence on the stability of the
system in combination additive resonance. However, their influ-
ences have to be taken into account if �1 and �2 are close, i.e.,
�1+�2�2�1. By a suitable scaling of coordinates, it is always
possible to take k12= 	k21=k�0 without the loss of generality.
Hence, assume k12=k21=1 in the following analysis.

Following the same procedure as in the previous section, the
moment Lyapunov exponents and Lyapunov exponents can be de-
termined and are shown in Figs. 3–9.

The Lyapunov exponents obtained by perturbation and Monte
Carlo simulation are shown in Fig. 3. The frequencies of the sys-
tem are taken as �1=1 and �2=4, and the central frequency of the
bounded noise is taken as �0=�1+�2=5. From Fig. 3, one can
clearly see that the parametric resonance occurs when the fre-
quency detuning � is small ���0.5�. Figure 4 shows the moment
Lyapunov exponents for the undamped system. When the system
is undamped, the pth moment Lyapunov exponent is positive for
all p�0. It is seen that when the frequency detuning � is in-
creased the effect of combination resonance is reduced, which is
similar to the results of one degree-of-freedom system obtained in
Ref. �9�.

The numerical results of the moment Lyapunov exponents
given by Eq. �29� converge when K is sufficiently large. In this

Fig. 1 Lyapunov exponent for �1=�2=0 and �0=2�1
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study, K=20 yields satisfactory results and is used to calculate the
moment Lyapunov exponents for the undamped system. For the
damped system, a larger value of K is needed for satisfactory
results, as shown in Figs. 5 and 6. It is seen that the rate of
convergence varies for different system parameters.

The Monte Carlo simulation procedure proposed by Xie and
Huang �18� is applied to determine the pth moment Lyapunov
exponents of system �6�. The numerical results are presented in
Figs. 8 and 9 for �1=0.1 and 0.2, respectively, with various values
of �. In the simulation, the sample size is chosen as S=5000, the
time step is �t=10−5, the number of iterations is 2�108, the total

time of simulation is 2000, and the state vector is normalized after
every time period of t=20. The approximate analytical results of
�x�t��p� are also plotted for comparison. The number of harmonic

terms in the double Fourier series expansion is chosen as K=40. It
is seen that the approximate analytical results agree quite well
with the numerical results.

By increasing the value of �, i.e., the bandwidth of the narrow-
band excitation modeled by the bounded noise process increases,
and the effect of combination resonance is reduced, as reflected in
the decrease in the Lyapunov exponent and the moment Lyapunov

Fig. 2 Moment Lyapunov exponent for �1=�2=0, and �0=2�1 „K=12…

Fig. 3 Lyapunov exponent for �1=�2=0, and �0=�1+�2
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exponents, and the increase in the stability index, as seen in Figs.
7–9. Figure 7 shows that Lyapunov exponent becomes negative
for all values of � when � is increased to 0.8, meaning that the
system is stable almost surely. Furthermore, the system is unstable
in the pth moment �p�0�� for small values of �, as shown in
Figs. 8 and 9. For instance, Fig. 9 shows that when �=1.5 the
system is unstable in the pth moment only if p�7. The effect of
damping can be seen from the comparison of Figs. 8 and 9. At
�=1.5, the stability index is about p=2 for �1=�2=0.1 �Fig. 8�. If
�1 is increased to 0.2, the stability index is about p=7. As ex-

pected, increasing the damping always stabilizes the system.
By varying the central frequency �0 to 	�1−�2	 and following

the same procedure, one can easily obtain the moment Lyapunov
exponents for combination differential resonance.

4.3 Subharmonic and Combination Additive Resonance.
Assuming �1��2, one has 2�1�2�2��1+�2. The central fre-
quency of the bounded noise is taken as �0=�1+�2. Here, the
parameters of the system are �1=�2=1 and �0=2. Thus, the co-
efficients in Eq. �25� are given by

Fig. 4 Moment Lyapunov exponent for �1=�2=0 and �0=�1+�2 „K=20…

Fig. 5 Moment Lyapunov exponent for �1=0.2, �2=0.1, and �0=�1+�2
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ĥ11 = 1
4 �k11 + k12 tan ��cos z, ĥ21 = 1

4 �k22 + k21 cot ��cos z

ŝ1 = − 1
8 ��k21 − k12� + �k22 − k11�sin 2� + �k12 + k21�cos 2��sin z

+ 1
2 ��1 − �2�sin 2�

q̂1 = − 1
8 ��k11 + k22� + �k11 − k22�cos 2� + �k12 + k21�sin 2��sin z

− 1
2 ���1 + �2� + ��1 − �2�cos 2��

The above expressions show that the coefficients are linear
combinations of the coefficients for subharmonic and combination
additive resonances. Thus, all kij’s contribute to the resonance of

Fig. 6 Moment Lyapunov exponent for �1=0.2, �2=0.1, and �0=�1+�2

Fig. 7 Lyapunov exponent for �1=0.2, �2=0.1, and �0=�1+�2
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the system. Similarly, increasing the value of � results in a more
stable system, which can be seen from Figs. 10 and 11. One can
also draw the conclusion that larger values of k22 yields more
significant resonances since larger k22 means larger amplitude of
the bounded noise. Figure 12 shows that the damping can reduce
the resonance significantly and even stabilize the system when the
value of � is relatively large. For example, the Lyapunov expo-
nents for �=1.5 are nearly all negative except those close to the
central frequency. The moment Lyapunov exponents for the un-
damped system with �=1 and various detuning parameters � are
shown in Fig. 13. The stabilization of damping can also be ob-

served in Fig. 14 in terms of the moment Lyapunov exponents.
Consistently, larger values of � also make the system more stable
in the pth moments for p�0.

A comparison of Figs. 1, 3, and 11 indicates that the combined
effect of subharmonic and combination additive resonances results
in not only more significant resonance in terms of larger
Lyapunov exponent than either case separately but also wider
resonance region in terms of frequency detuning �. This means
that the parametric resonance can be triggered more easily. For
example, the resonance region for subharmonic resonance is

Fig. 8 Moment Lyapunov exponent for �1=�2=0.1, and �0=�1+�2

Fig. 9 Moment Lyapunov exponent for �1=0.2, �2=0.1, and �0=�1+�2

041007-10 / Vol. 76, JULY 2009 Transactions of the ASME

Downloaded 04 May 2010 to 171.66.16.44. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



around 	�	�0.5 from Fig. 1, while the region is expanded to
	�	�1.0 from Fig. 11 when the effects of subharmonic resonance
and combination additive resonance are combined.

As shown above, the coefficients for subharmonic resonance is
associated with k11 or k22 only, while the coefficients for combi-
nation additive resonance includes only k12 and k21, which repre-
sent the coupling between the two degrees-of-freedom. When the
subharmonic resonance and the combination additive resonance
occur simultaneously, the resonance results have contributions
from all kij. Depending on the coefficients, the convergent rates of
the Fourier series are different. For subharmonic resonance, K

=12 is sufficient to obtain satisfactory results. However, a rela-
tively large K �K=40� is needed for the combination additive
resonance with damping. Meanwhile, other parameters such as the
damping coefficients �1,2, noise intensity �, and frequency detun-
ing � also influence the rates of convergence �see, e.g., Figs. 5
and 6�.

Larger values of kij yield more significant resonance since they
are the amplitudes of the bounded noise. Decreasing the value of
� has the same effect on the stability because the power spectrum
of the bounded noise is more narrowbanded, and the effect of

Fig. 10 Lyapunov exponent for �1=�2=0, �1=�2, and �0=2�1

Fig. 11 Lyapunov exponent for �1=�2=0, �1=�2, and �0=2�1
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parametric resonance is more prominent. The frequency detuning
parameter � is also a key parameter to the stability of the system.
When the central frequency of the bounded noise is offset from
the resonance frequencies, the effect of parametric resonance is
significantly reduced. The damping always has a stabilizing effect.

5 Conclusion
The dynamic stability of a two degrees-of-freedom system sub-

jected to bounded noise excitation is studied by determining the

moment Lyapunov exponents. The partial differential eigenvalue
problem governing the moment Lyapunov exponent is established
using the theory of stochastic dynamical system. For weak noise
excitations, a singular perturbation method is employed to obtain
second-order expansions of the moment Lyapunov exponents. A
double Fourier series is used to solve the eigenvalue problem. The
Lyapunov exponent is then obtained using the relationship be-
tween the moment Lyapunov exponent and the Lyapunov expo-
nent. The accuracy of the approximate analytical results are vali-

Fig. 12 Lyapunov exponent for �1=�2=0.2, �1=�2, and �0=2�1

Fig. 13 Moment Lyapunov exponent for �1=�2=0, �1=�2, and �0=2�1 „K=20…

041007-12 / Vol. 76, JULY 2009 Transactions of the ASME

Downloaded 04 May 2010 to 171.66.16.44. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



dated and assessed by comparing with those obtained using Monte
Carlo simulation. It is observed that there is an excellent agree-
ment between the analytical results and the numerical results. The
effect of noise on various parametric resonances, such as subhar-
monic resonance, combination additive resonance, and combined
subharmonic and combination additive resonance, is investigated.
The effects of parameters on the stability are studied.
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Delamination Susceptibility of
Coatings Under High Thermal
Flux
Delamination of coatings initiated by small cracks paralleling the free surface is inves-
tigated under conditions of high thermal flux associated with a through-thickness tem-
perature gradient. A crack disrupts the heat flow thereby inducing crack tip stress inten-
sities that can become critical. A complete parametric dependence of the energy release
rate and mode mix is presented in terms of the ratio of the crack length to its depth below
the surface and coefficients characterizing heat transfer across the crack and across the
gaseous boundary layer between the surface and the hot gas. Proximity to the surface
elevates the local temperature, which in turn, may significantly increase the crack driving
force. A detailed assessment reveals that the energy release rates induced by high heat
flux are capable of extending subsurface delaminations in thermal barrier coatings, but
only when the modulus has been elevated by either calcium-magnesium-alumino-silicate
(CMAS) penetration or sintering. Otherwise, the energy release rate remains well below
the toughness. �DOI: 10.1115/1.3086590�

1 Introduction
When brittle coatings function in the presence of thermal gra-

dients and high heat flux, they are susceptible to delamination and
spalling. The most widely investigated examples are thermal bar-
rier coatings �TBCs� used in turbines for aeropropulsion and
power generation. Articles that describe and analyze the mecha-
nisms capable of providing sufficient energy release rate, Gdelam,
to drive delamination have been presented �1–4�. They are in two
basic mechanism categories, governed by the sign of the stress in
the coating at its surface. �i� When this stress is tensile, sufficient
energy release rate of delamination cracks parallel to the surface
only arises when a secondary crack perpendicular to the delami-
nation links it to the free surface allowing the stress above the
delamination to be released. Similarly, if the delamination con-
nects to a free edge the coating can displace in mixed mode as the
delamination extends �1�. The scenario providing the largest
Gdelam is that involving a temperature gradient during operation
having sufficient magnitude to induce an appreciable tensile stress
at the surface upon cooling to ambient �2,5�. Other mechanisms
that generate tension at the surface are not sufficiently potent:
these include sintering-induced stresses. �ii� When the surface is
in compression, an energy release rate for an edge delamination
crack still exists �albeit that it is strictly mode II�. In this case, if
the delamination extends to a free edge, or is connected to the
surface by a wide cracklike gap, the stress in the coating above the
delamination can be released as the delamination extends. In the
absence of cracks linking to the surface or free edges, the energy
above the delamination can be released by buckling, but this re-
quires a large initial delamination to already exist, formed by
some �independently specified� mechanism. Another potent
mechanism involves rapid heat-up in the presence of a subsurface
flaw �Fig. 1�. In this scenario, the flaw is thermally insulting,
resulting in a temperature difference, �Tflaw, between its two faces
�with compression at the coating surface�. This �Tflaw induces an
energy release rate of the cracklike flaw. Earlier estimates �3�
implied that Gdelam was too small to be of concern when tempera-
ture boundary conditions pertain at the top and bottom of the

coating set by temperatures computed assuming no flaw. How-
ever, in most TBC applications, heat transfer boundary conditions
apply such that the temperature at the surface above the crack is
considerably higher than in the absence of a crack, rendering this
mechanism more potent. Such boundary conditions are investi-
gated here. Indeed, in high heat flux tests, dramatic spalling of the
coating has been observed during heat-up �6�. The intent of this
article is to re-examine rapid heating with the new boundary con-
ditions. The emphasis will be on relatively small flaws �less than
the coating thickness� to be compatible with the foregoing obser-
vations.

The analysis to be presented regards the coating as elastic �no
creep� with isotropic thermal and elastic properties. Insight will be
acquired by solving a sequence of increasingly complex thermal
problems �Fig. 1�, starting with an isolated crack in an infinite
body, followed by a crack in a semi-infinite coating, and, finally, a
crack in a finite coating on a conducting substrate. The problems
differ thermally from that considered previously by virtue of the
heat transfer boundary condition between the hot gas and the coat-
ing surface. It will become apparent that this situation causes the
material above the crack to become hotter than in the absence of
the crack, thereby elevating the energy release rate. The analysis
will include the presence of an initial residual stress in the coating,
at ambient, again to be consistent with the practical situation.

The application of the results will be illustrated for a TBC on a
superalloy substrate. The coating will have thickness, H=1 mm,
consisting of yttria-stabilized zirconia �YSZ� deposited by air
plasma spray �APS� with thermal conductivity, k=1 W /m K,
thermal expansion coefficient, �=11 ppm / °C, and in-plane
modulus, E=20 GPa �5�. For coatings infiltrated by a glasslike
substance due to debris ingested into the engine, such as CMAS to
be discussed later, the assumption of isotropic thermal and elastic
properties is probably justified. On the other hand, elastic and
thermal isotropy is obviously an approximation for uninfiltrated
plasma spray coatings, but necessary at this stage since details of
the anisotropies are not yet available. The heat flux boundary con-
dition at the surface has such a strong effect on the crack driving
force that results based on the idealized isotropic coating provide
considerable insight. Similarly, detailed knowledge of the fracture
anisotropy of the coatings is not yet known although the morphol-
ogy of the microstructure of plasma spray coatings is expected to
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give rise to some anisotropy, which would have some effect on
delamination trajectories, as will be remarked on in the summary
discussion.

2 Problem Statement
Each of the three problems depicted in Fig. 1 is infinite in

extent in the x-direction. Throughout the paper, T0�y� denotes the
temperature distribution in the absence of the crack. Under the
steady state thermal conditions considered here, T0�y� satisfies
�2T0=d2T0 /d2y=0. The heat flux through the coating when no
crack is present is denoted by

q0 = kdT0/dy �1�

with k as the thermal conductivity.
Denote the heat transfer coefficient governing the thermal con-

duction across the crack by hC, such that the downward thermal
flux across it is hC�T+−T−� expressed in terms of the temperatures
on its top �+� and bottom ��� faces. The condition

k
�T

�y
= hC�T+ − T−� �2�

must be satisfied at all points with �T /�y continuous across the
crack. For Problems II and III, the role of heat transfer through the
gaseous boundary separating the surface of the coating and the hot
gas at temperature TG is taken into account. Denote the heat trans-
fer coefficient for the boundary layer by hG, such that at any point
along the surface with temperature Tsurface the heat flux into the
surface is

k
�T

�y
= hG�TG − Tsurface� �3�

The steady-state temperature distributions for the three prob-
lems in the absence of the crack are as follows. For Problem I, the
heat flux, q0, is specified

T0�y� = T0�0� +
q0y

k
�4�

with T0�0� having no influence. For Problem II, both q0 and TG
are specified

T0�y� = T0surface +
q0�y − d�

k
, T0surface = TG −

q0

hG
�5�

For Problem III, TG and Tsubstrate are specified

T0�y� = T0surface�H − d + y

H
� + T0interface�d − y

H
� �6�

with T0interface as the temperature at the coating/substrate interface.
The heat flux and surface temperature are

q0 =
BG

�BG + 1 + BG HS/H�
k�TG − Tsubstrate�

H
�7�

and

T0surface = TG −
q0

hG

where the dimensionless Biot number for the gaseous boundary
layer is defined as

BG =
hGH

k
�8�

A sense for the numerical values of the variables is provided for
the TBC example cited in Sec. 1. With TG−T0surface=400°C and
T0surface−T0interface=400°C as the temperatures drops across the
boundary layer and coating, respectively, the parameters become
hG=1 kW /m2 K, BG=1, and q0=0.4 MW /m2.

Regardless of the constraint at infinity, only two nonzero
thermal-stress components result from T0�y�: �xx�y� and �zz�y�.
These components induce zero energy release rate for a crack
parallel to the surface. Similarly, residual stresses parallel to the
surface have no effect on the energy release rate of cracks parallel
to the surface. Consequently, only the temperature change,
�T�x ,y�, due to the presence of the crack produces stress inten-
sities, where

�T�x,y� = T�x,y� − T0�y� �9�

Steady-state requires �2�T�x ,y�=0. If the crack does not impede
the heat flux �hC=��, then �T�x ,y�=0 and the energy release rate
is zero.

3 Isolated Crack in an Infinite Body
Results are reviewed for the plane strain problem of a crack in

an infinite body �Problem I, Fig. 1� subject to a downward-
directed vertical heat flux, q0=kdT0 /dy, remote from the crack. In
the limit of no heat transfer across the crack �hC=0�, a closed
form solution exists �7,8�. With KI and KII denoting the mode I
and II stress intensity factors, the problem is pure mode II �KI
=0�, with energy release rate given by

G0�0� =
�

16
�� a

H
�3

, � =
EH3�2q0

2�1 + ��
k2�1 − ��

�10�

where 2a is the crack length, E and � are Young’s modulus and
Poisson’s ratio of the material, � its coefficient of thermal expan-
sion, and H is a characteristic dimension �later equated to the
coating thickness�. The rationale for the notation G0�0� will be-
come apparent; the subscript 0 signifies an isolated crack. The
result �Eq. �10�� has the notable features that the energy release
rate is sensitive to crack length, G0�a3, and the heat flux, G0
�q0

2. These strong dependencies often dominate the incidence of
delamination, as elaborated later.

If hC�0, the problem is still pure mode II, but the energy
release rate now depends on a dimensionless Biot number defined
by

BC
� =

hCa

k
�11�

This problem does not have a closed form solution. A numerical
result �9� for the energy release rate is plotted in Fig. 2. Over the
range of Biot numbers plotted �0	BG

� 	2�, an accurate fit to the
numerical results is

Fig. 1 Three problems analyzed in the paper. The coefficient
of heat transfer across the crack is denoted by hC in each of the
three problems. The heat transfer coefficient across the gas
boundary layer at the surface of the thermal barrier coating in
Problems II and III „shown as a shaded layer… is denoted by hG.
The temperature of the hot gas above the boundary layer is TG.
In all three problems, the vertical heat flux in the absence of the
crack is denoted by q0.
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G0�BC
� � =

G0�0�

�1 + 3.709 BC
� + ��

2
BC

��2� �12�

The Poisson’s ratio dependence is precisely captured through Eq.
�10�, and the limit for large BC

� , G0�0� / �� BC
� /2�2, has been ob-

tained by a rigorous perturbation expansion. A closely related re-
sult for a crack on an interface will be reported in Sec. 5. The
dependence of the energy release rate on crack length is domi-
nated by that implicit in G0�0�.

4 Near-Surface Cracks in a Semi-Infinite Coating
In Problem II depicted in Fig. 1, a crack of length 2a lies at a

depth d below the surface of the semi-infinite body. The role of
heat transfer through the gaseous boundary separating the surface
of the coating and the hot burning gas at temperature TG is taken
into account, as discussed in Sec. 1. The temperature distribution
in the absence of the crack, T0�y�, in Problem II is given by Eq.
�5� with q0 and TG specified. In the presence of a crack, T0�y� is
approached remotely from the crack. Two normalizations of the
Biot number for the boundary layer will be useful

BG =
hGH

k
and BG

� =
hGa

k
�13�

The first normalization employing the layer thickness, H, was
introduced in Eq. �7�. Even though H does not enter directly in
Problem II, BG obtains for an actual coating, as illustrated by the
estimate of BG obtained below Eq. �8�, and then BG

� = �a /H�BG.
Plane strain conditions governing the changes in stress and

strain due to the presence of the crack are assumed. As noted
earlier, only the change in temperature �T due to the presence of
the crack generates stress intensities. Moreover, in Problem II, �T
decays to zero remotely such that the change in remote stress is
not influenced by the constraints on deformation.

4.1 The Nonconducting Shallow Crack Limit (hC=0, d Õa
™1). The only analytical result that has been possible to derive is
the asymptotic solution for a shallow nonconducting crack �hC
=0, d /a
1� �see the Appendix�. The result is

G =
1

2

�1 + ��
�1 − ��

Ed��q0a

k
�2��

4
+

1

BG
� �1 −

tanh�	BG
� a/d�

	BG
� a/d

�
2

�14�
with

� = tan−1�KII

KI
� = 52.1 deg �15�

Normalizing G by G0�0� in Eq. �10� for the isolated crack of
length 2a subject to the same overall heat flux q0 gives

G

G0�0�
=

8

�

d

a��

4
+

1

BG
� �1 −

tanh�	BG
� a/d�

	BG
� a/d

�
2

�16�

which is plotted in Fig. 3. The most important observation is the
existence of a range of shallow locations for which G /G0�0� can
be significantly in excess of unity if BG

� �ahG /k	0.1. The impli-
cation is that cracks near the surface can become critical at con-
siderably lower overall heat flux than deeper cracks. This feature
arises because disruption of the heat flow substantially elevates
the surface temperature just above the shallow crack. This eleva-
tion increases the compressive stress in the ligament above the
crack, which, in turn, increases the energy release rate. In the
extreme, the local surface temperature can approach TG.

4.2 The Nonconducting Near-Surface Crack „hC=0…. Fi-
nite element thermal-stress analyses for all cases were carried out
using ABAQUS/Standard software �10�. The deformation is taken to
be plane strain, and the material is represented by the linear elas-
ticity. Utilizing symmetry, only the half of the geometry to the
right of the symmetry line �x=0� was analyzed. Symmetric
boundary conditions were applied on the symmetry line. The dis-
tance to right edge is taken to be sufficiently large compared with
both the crack length and the total thickness in the y-direction,
such that the intensity factors are independent of this distance. The
right edge is taken to be traction free. The heat transfer boundary
condition on the top surface was specified through ABAQUS’s ther-
mal load option �SFILM, while a fixed uniform temperature was
applied to the bottom surface. The crack was modeled as two
separate surfaces with a small gap. The thermal conduction con-
dition across the crack can be specified through ABAQUS’s thermal
contact option �GAP CONDUCTANCE. The meshes were de-
vised to give highly accurate results for the energy release rate
established by comparison with known results, such as those for
the isolated crack in Eqs. �10� and �12�. In particular, the result for
the isolated crack with partial thermal conductivity in Eq. �12� and
Fig. 2 was validated to within a fraction of a percent. A highly
refined mesh is laid out on the ligament ahead of the tip. Eight

Fig. 2 Effect of heat conduction across an isolated crack on
energy release rate †9‡. The normalizing value G0„0… is the en-
ergy release rate for the nonconducting crack given by Eq. „10….
Pure mode II pertains „�=90 deg….

Fig. 3 Amplification of energy release rate for shallow cracks,
as predicted by the asymptotic result for the energy release
rate of a crack just below the surface as dependent on the Biot
number governing heat transfer through the gas boundary
layer, BG

� =hGa /k. The crack length is 2a and the depth below
the surface is d. The crack is nonconducting „hC=0… and has
mode mix �=52.1 deg. The normalizing value, G0„0…, pertains
to the isolated crack experiencing the same overall heat flux
given by Eq. „10….
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node quadrilateral elements with reduced integration were em-
ployed for the fully coupled thermal-stress analyses. Such ele-
ments exploit the biquadratic shape function for the displacement
and a bilinear shape function for the temperature. The crack tip
was modeled with a ring of collapsed quadrilateral elements to
capture the strain singularity, thus improving the accuracy of the
calculations, �see ABAQUS manual for details�. At the crack tip, the
elemental size is on the order of one-hundredth of the crack depth.

Numerical results for G and � computed for 0.05	d /a	2 and
selected BG

� are plotted in Figs. 4 and 5. They affirm the trends
exposed by the asymptotic formulas, Eqs. �14� and �15�, and re-
veal that cracks with d /a�1 /2 can experience energy release
rates well above those for deep cracks if BG

� 	0.1. It appears that
the mode mix, �, is independent of BG

� , but it has not been pos-
sible to establish this theoretically. The numerical results establish
the range of validity of the asymptotic formulas is limited to
d /a	0.1.

The elevation of the energy release rate due to surface proxim-
ity only arises when there is a substantial temperature drop across
the gaseous boundary layer �small BG

� �. Conversely, when BG
�

→� such that Tsurface=TG, the boundary layer is eliminated, and

surface proximity reduces the energy release rate. The transition
occurs for BG

� �0.25, where G is essentially independent of the
crack depth.

For completeness results for the limit hG=�, Tsurface=TG is
plotted in Fig. 6, affirming that proximity to the surface reduces G
relative to that for the deep crack.

4.3 The Near-Surface Crack With Combinations of hC and
hG. Selected results in Fig. 7 illustrate how the thermal conduc-
tivities of the boundary layer and the crack interact to determine
the energy release rate. The plot quantifies trends that would be
expected from the previous plots when either the crack is noncon-
ducting or the boundary layer provides no thermal resistance. Spe-
cifically, elevation of the energy release rate due to proximity to
the surface depends on both BC

� and BG
� . For BC

� =0.2, appreciable
elevation near the surface only occurs if BG

� 	0.1. For BC
� =0.5, it

does not occur for any BG
� 
0.025 �plot not shown�.

5 Cracks in a Coating on a Substrate
When the crack is short �a /H
1� and relatively near the sur-

face, the results of Sec. 4 apply. Otherwise, for Problem III, inter-
action with the substrate must be taken into account. In thermal
barrier systems, the conductivity of the metal substrate is typically
at least over an order of magnitude greater that of the coating,
enabling the temperature along the bottom surface of the sub-

Fig. 4 Normalized energy release rate computed numerically
for nonconducting crack of length 2a located a distance d be-
low the surface for various Biot numbers, BG

� =hGa /k, charac-
terizing the gaseous boundary layer at the surface. The normal-
izing value, G0„0…, pertains to the isolated crack experiencing
the same overall heat flux given by Eq. „10…, i.e., the limit d /a
š1.

Fig. 5 Mode mix, �, computed numerically for nonconducting
crack of length 2a located a distance d below the surface. The
curve applies to all Biot numbers, BG

� =hGa /k, characterizing
the gaseous boundary layer at the surface. This result also ap-
plies for Problem II for any combination of BC

� and BG
� .

Fig. 6 Normalized energy release rate computed numerically
for limit „hG=� and Tsurface=TG… with no gaseous boundary
layer. The Biot number governing heat transfer across the
crack is BC

� =hCa /k, and G0„BC
�
… is given by Eq. „12…. The mode

mix, �, is plotted in Fig. 5.

Fig. 7 Normalized energy release rate computed numerically
for BC

� =hCa /k=0.2 and various BG
� =hGa /k with G0„BC

�
… given by

Eq. „12…. The mode mix, �, is plotted in Fig. 5.
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strate, Tsubstrate, to be nearly uniform. Interaction of a relatively
short, deep crack �a /H
1� with the substrate significantly re-
duces the energy release rate. Detailed trends will not be pre-
sented, rather, one result will be quoted in Sec. 5.1.

5.1 Short Crack „a ÕH™1… at the Interface With the
Substrate. Consider a plane strain crack of length 2a on the in-
terface between two semifinite half spaces. The half space above
the interface has moduli, coefficient of thermal expansion, and
thermal conductivity taken to be the same as those in Problem I.
The half space below the interface has identical moduli to that
above the interface with an infinite thermal conductivity �recall
that the thermal conductivity of the metal substrate is typically ten
times that of the coating�. The remote heat flow is q0 and the heat
transfer across the crack is hC, as before.

It has not been possible to find the solution to this problem in
literature, although a general solution for the interface crack with
zero conductivity is available �11�. It is relatively straightforward
to show that this problem with nonzero hC is pure mode II, and
that the stress intensity factor, KII, is exactly half that for the
isolated crack of length 2a in the uniform material �Problem I�,
except that the corresponding heat transfer coefficient across the
crack must be taken as 2hC. �Solution details are omitted.� Thus,
the short interface crack has a greatly reduced energy release rate
given precisely by

G =
1

4
G0�2 BC

� � �17�

where G0 is give by Eq. �12�. The result holds in the limit when
there is no heat conducted across the crack, hC=0, and agrees with
the result in Ref. �11�. It does not depend on the coefficient of
thermal expansion of the lower half space.

5.2 Long Crack „a ÕHš1…. Numerical results for Problem III
are presented in Fig. 8 for the specific case of a substrate with
HS /H=3, ksubstrate /k=100, Esubstrate /E=5, and �substrate=0.3. The
result depends on Poisson’s ratio of the coating, taken as �=0.2.
The two relevant Biot numbers are defined as BC=hCH /k and
BG=hGH /k. The energy release rate can be expressed in the form

G = �F�a/H,d/H,BG,BC� �18�

where F is a dimensionless function of the arguments shown. The
trend with the normalized depth for a nonconducting crack �BC

=0� reveals that the surface enhancement of G only occurs for the
shallow cracks considered in Sec. 3. For long cracks �a /H�1�, G
increases with depth below the surface. In all cases, G increases
and � decreases with crack extension, although the asymptotic
limit for very long cracks is nearly attained for a /H=10. The
implication is that any crack that attains modest length, a /H
1,
once critical, will propagate unstably without arrest.

6 Implications
The application of the foregoing results is illustrated for a YSZ-

TBC on a superalloy substrate. The coating has thickness, H
=1 mm, with thermal conductivity, k=1 W /m K, thermal expan-
sion coefficient, �=11 ppm / °C, and in-plane modulus, E
=20 GPa �5�. The initial examples regard the temperatures drops
across the boundary layer and coating as, respectively, TG
−T0surface=400°C and T0surface−T0interface=400°C. Other values
are invoked as the arguments emerge. The ensuing thermal param-
eters are hG=1 kW /m2 K, BG=1, and q0=0.4 MW /m2. This set
of parameters results in an energy release rate coefficient, �

580 J m−2. While this is quite large relative to the mode I
toughness of the TBC ��
50 J m−2� �12,13�, note that the actual
energy release rate is much smaller because of qualifying terms
substantially less than unity, as elaborated below. A preamble be-
fore proceeding is that the phase angle, in all cases, is in the range
50	�	90 deg. Consequently for a medium with isotropic frac-
ture resistance, the crack would extend diagonally down through
the coating �not parallel to the substrate�. Fracture anisotropy, if
sufficient, could result in parallel delaminations, but this seems
unlikely given the degree of mode mixity unless the anisotropy is
quite large. The exception is delaminations in the coating just
above the substrate. These could oscillate in the coating as they
extend �on average� parallel to the surface, in accordance with the
appropriate mixed mode toughness. Given that this situation is the
most realistic, it is considered first. The preliminary estimates as-
sume an insulating crack �hc=0� to obtain the maximum possible
energy release rates.

The most basic result is the trend in G0�0� as a function of
crack length, ascertained for 50 �m	2a	1 mm, for various
levels of heat flux within the range 0.4	q0	2 MW /m2 �Fig. 9�.
To interpret these plots, the fracture toughness must be super-
posed. For this purpose, the mode I toughness of YSZ ��

50 J m−2� �12,13� has been included in the figure. This choice

Fig. 8 Energy release rate and mode mix in Problem III com-
puted numerically for cracks at various depths for BC=0 and
BG=1. HS /H=3, ksubstrate/k=100, Esubstrate/E=5, �substrate=0.3,
and �TBC=0.2.

Fig. 9 Energy release rate computed numerically for shallow
cracks at various depths for BC=0 and BG=1 for q0
=0.4 MW/m2 and E=200 GPa „H=1 mm, k=1 W/m K, �=0.2,
and �=11Ã10−6/K…. Critical flaw sizes are indicated based on a
representative mode I toughness, �TBC.
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again represents a worst case from a delamination susceptibility
perspective, since the delaminations are mixed mode with appre-
ciably higher toughness. Recall that, for short cracks, G
=G0�0� /4, it is apparent that, even at the highest heat flux, the
energy release rate only becomes sufficiently large to attain the
toughness when the delaminations exceed about 1 mm in length
�a /H�1�. The same conclusion is reached by referring to Fig. 7,
recalling that �
580 J m−2. Such long cracks do not pre-exist in
these systems, but could form due to other thermomechanical phe-
nomena �1,5,14�. Once delaminations of this length have been
created just above the substrate, the heat flux induced energy re-
lease rate would lead to catastrophic extension, with associated
spalling.

The situation for short cracks just below the surface can be
judged by combining the information contained in Figs. 3, 4, and
7 with that in Fig. 8. An example is presented for short cracks,
0.1	a /H	0.5, just beneath the surface, 0.01	d /a	0.1. The
result for a representative flux, q0=0.4 MW /m2, and a conven-
tional choice of the modulus �E=20 GPa� indicates that G always
remains below the mode I toughness. The corresponding result for
a case wherein the top of the TBC has either sintered or been filled
with CMAS �E=200 GPa� is plotted in Fig. 9. For this case, G
can exceed � for shallow cracks in the length and depth ranges
2a
0.6 mm and d
30 �m. Namely, moderately long shallow
cracks are susceptible to delamination. Moreover, recalling that
increasing the heat flux by a factor 1.5 would increase G by a
factor 2.25 �because of the scaling, ��q0

2� infers that situations
capable of generating an extreme heat flux would allow short
shallow cracks to delaminate. Indeed, delaminations of this type
reported in CMAS infiltrated airfoils �type �iii� in Fig. 10� �5� had
previously defied explanation. In summary, high heat flux appears
to be capable of extending subsurface delaminations, but only
when the modulus has been elevated by either CMAS penetration
or sintering. Otherwise, the energy release rates remain well be-
low the toughness, unless large delaminations have already
formed by other mechanisms.
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Appendix: Asymptotic Analysis for Shallow Noncon-
ducting Cracks—Problem II

Problem II in Fig. 1�b� in the limit d /a
1 is considered for
plane strain cracks with hC=0. The first step in the analysis is to
obtain the temperature distributions above and below the crack.
Because the layer above the crack is thin and because no heat is
conducted across the crack, the y-dependence of the temperature
in this layer is negligible. Conservation of heat under the steady-
state conditions of interest requires

d2T

d2x
−

hG

kd
T = −

hG

kd
TG, �x� � a, 0 	 y 	 d �A1�

Zones whose size is of order d exist at the ends of the crack, in
which the temperature transitions from that in the strip to the
surface temperature T0surface are given by Eq. �5�. This zone
shrinks to zero as d /a becomes small. These zones are ignored
and the boundary conditions for Eq. �A1� are taken as T��a�
=T0surface. Thus, the temperature distribution above the crack is

T = TG −
q0

hG

cosh�	BG
� a/dx/a�

cosh	BG
� a/d

, �x� � a, 0 	 y 	 d

�A2�
An approximation to the temperature distribution on the bottom
surface of the crack also exploits the facts that the crack is ther-
mally insulating and d /a
1. Consider the thermal problem for
the half space below the crack line along y=0. For �x��a,
�T /�y=0. For �x��a, T=T0�0�, where T0�0� is given by Eq. �5�,
with transition zones of order d between these two conditions at
the crack ends. If these zones are ignored, the conditions along
y=0 are identical to those for the classical problem of an isolated
nonconducting crack subject to remote heat flux, q0, in an infinite
plane. The temperature distribution just below the crack is

T = T0�0� −
q0a

k
	1 − � x

a
�2

, �x� � a, y = 0− �A3�

The change in temperature due to presence of the crack, �T=T
−T0�y�, determines the stress intensity factors

�T =
q0

hG
�1 −

y

a
B0

� −
cosh�	BG

� a/dx/a�

cosh	BG
� a/d


, �x� � a, 0 	 y 	 d

�A4�

�T = −
q0a

k
	1 − � x

a
�2

, �x� � a, y = 0− �A5�

Because the temperature change �T satisfies Laplace’s equation,
the associated strains generated under plane strain

�xx = �yy = ��1 + ���T, �xy = 0 �A6�
are compatible, producing no stress within the simply connected
region shown in Fig. 11, a created by a cut along the y-axis above
the crack. However, the displacements derived from these strains
are discontinuous across the cut—it is the enforcement of their
continuity that generates the stresses and stress intensity factors
that arise from �T. The second step in the analysis is to compute
the displacement discontinuity and then to determine the force/
length, �P, and moment/length, �M, in Fig. 11�b�. These are
directly linked to the stress intensity factors by �15�

KI =
1

	2d
��P cos � + 2	3�Md−1 sin ��

Fig. 10 Delaminations in the TBC on an engine shroud †5‡. The
delaminations just below the surface occur within the CMAS
infiltrated regions, which give rise to a significantly increased
Young’s modulus.

Fig. 11 „a… Cut above the crack creating a simply connected
region. „b… Resultant force/length and moment/length required
to eliminate displacement discontinuity across the cut in „a….
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KII =
1

	2d
��P sin � − 2	3�Md−1 cos �� �A7�

where �=52.1 deg.
Given the symmetry of �T with respect to x and the fact that

the associated shear strain, �xy, vanishes, one can readily show
that the displacements derived from the strains in Eq. �A6� are
such that uy is continuous across the cut, while the discontinuity
of ux varies linearly across the cut. Denote the discontinuity across
the cut by �ux�=2�+2��0+�y, where ��0+� is the rotation of the cut
surface on the right, taken as positive in the clockwise sense. The
difference in average strain �xx from Eq. �A6� on the top and
bottom surfaces of the crack obtained using Eqs. �A4� and �A5�
gives

�

a
= −

�1 + ���q0

hG
�BG

� ��

4
+

d

a
� + 1 −

tanh	BG
� a/d

	BG
� a/d


 �A8�

The rotation discontinuity is given by ��0+�=��a�+�0
a�dx, where

��a� is the rotation at the right hand crack tip and � is the curva-
ture of the upper crack surface. Because �T varies linearly with y
in the layer above the crack in Eq. �A4�, the latter is immediately
obtained using Eq. �A6� with

� =
�1 + ���q0

k
�A9�

Next, ��a� can be obtained using the fact that �� /�x=ux,xy = �1
+�����T /�x along the lower surface of the crack because �xy

=0. Then, because symmetry dictates that the rotation vanishes at
x=0 below the crack, one obtains from Eq. �A5�

��a� = −
�1 + ���q0a

k
�A10�

Together, Eqs. �A9� and �A10� give

��0+� = 0 �A11�
The final step in the analysis is to enforce continuity of displace-
ments across the cut by imposing �P and �M in Fig. 11�b�. For
slender layers �d /a
1�, the layer can be modeled as a plate
clamped at its right end. The choices

�P = −
Ed

�1 − �2�
�

a
=

E�q0d

�1 − ��hG
�BG

� ��

4
+

d

a
� + 1

−
tanh	BG

� a/d
	BG

� a/d

, �M = 0 �A12�

provide continuity by canceling � in Eq. �A8� and ��0+� in Eq.
�A11�. Then, by Eq. �A7�

�KI,KII� =
E	d

	2�1 − ��

�q0a

k ��

4
+

d

a
+

1

BG
� �1 −

tanh	BG
� a/d

	BG
� a/d

�

��cos �,sin �� �A13�

The term d /a in the square brackets above is negligible over the
range of validity of Eq. �A13� and is on the order of terms already
neglected in the analysis, thus it can be neglected. The results for
G in Eq. �14� and � in Eq. �15� follow directly.
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An Experimental Study on the
Influence of Vortex Generators on
the Shock-Induced Boundary
Layer Separation at M=1.4
The results of an investigation into the effects that sub-boundary layer vortex generators
(SBVGs) have on reducing normal shock-induced turbulent boundary layer separation
are presented. The freestream Mach number and Reynolds number were M �1.45 and
R�15.9�106 /m, respectively. Total pressure profiles, static pressure distributions, sur-
face total pressure (Preston pressure) distributions, oil flow visualization, and Schlieren
photographs were used in the result analysis. The effects of SBVG height and the location
upstream of the shock were investigated. A novel tetrahedron shape SBVG with different
lengths (30 mm and 60 mm) was used for these experiments. The effect of streamwise
location of the longer SBVG on the interaction was also investigated. The location of the
shock wave was controlled by an adjustable choke mechanism located downstream of the
working section. The results show that an increase in the distance for the longer SBVG
from 17.4�R to 25.5�R did not remove the separation entirely, but the shorter SBVG
provided higher total pressure distribution within the boundary layer in the recovery
region. This also provided a healthier boundary layer profile downstream of the interac-
tion region with lower displacement thickness and shape factor.
�DOI: 10.1115/1.3086591�

1 Introduction

It is well known that the interaction of the shock wave with
boundary layers could result in flow separation. The interaction
between a turbulent boundary layer and a shock wave is a feature
frequently encountered in modern aerodynamics. It occurs, for
example, in the flow round an airfoil at transonic speeds and in the
intakes of jet engines. It can be also responsible for a large loss in
intake delivery pressure.

Numerous investigations have been reported by several authors
to verify the validity of channel, cavity, bump, and vortex genera-
tor devices for the control of boundary layer separation. Wheeler
invented three-sided submerged channels for the control of the
flow separation �1�. Bur and Corbel investigated a bump system
and compared it with a suction system in Onera �2�. A vortex
generator achieves boundary layer control only at the penalty of
considerable drag. A sub-boundary vortex generator produces vor-
tices, which travel downstream along the surface, causing turbu-
lence mixing between the boundary layer and the freestream, re-
sulting in an unwanted drag increase but less than a vortex
generator with the thickness of about boundary layer. Investiga-
tions on vane-type of vortex generators were carried out at NACA
in 1950 �3�, and many attempts have been made to state the ef-
fective role of vortex generator to mitigate buffeting, loss of con-
trol, and reduction of stability �4–7�. Later investigation on the
effectiveness of the submerged vortex generators showed their
effectiveness in controlling the separation of compressible turbu-
lent boundary layers �8�. Wheeler �9� also introduced a vortex
generator with the height of 60% of the local boundary layer
thickness, which were positioned at about 22% of the chord. The
result confirmed that it was able to reduce the drag of an LA2573

Liebeck low Reynolds number airfoil. Vane-type vortex genera-
tors are perhaps the most common type of SBVGs.

An extensive experimental investigation into the performance
of the vane-type vortex generators was carried out at DERA Bed-
ford boundary layer tunnel using 3D laser Doppler anemometry
�10� in their wind tunnel. The nominal air speed in the tunnel was
ranged between 10 m/s and 40 m/s. In these experiments, forward
wedge, counter-rotating joined V-shape, and spaced counter-
rotating vanes were investigated. They showed that SBVG devices
with the heights of about one-quarter of the boundary layer can
significantly reduce the size of the separated region. A recent sur-
vey has been done by Holden and Babinsky in a blowdown su-
personic wind tunnel at the University of Cambridge �11� to in-
vestigate the effectiveness of the wedge-shaped and arrays of
counter-rotating vanes in alleviating the boundary layer separa-
tion. The freestream Mach numbers were 1.5 and 1.3 at a unit
Reynolds number of 28�106 /m. Three shock positions have been
set up in different experiments. The experiments showed that for
the Mach number of 1.5, vane-type vortex generators can generate
stronger vortices closer to the surface and therefore are more ef-
fective than wedge-type at eliminating the shock-induced bound-
ary layer separation. With vortex generators, there are extra shock
waves generated at the leading and trailing edges of the vortex
generators and a strong re-expansion over the devices. This makes
a higher total pressure loss leading to a higher wave drag.

Kuethe �12,13� and then Rao �14� investigated semicircular
cross-section vortex generators, immersed within 65% or less of
the boundary layer thickness, and a wire vortex generator was
introduced by Ashil and Riddle �15�. The idea of applying pop-up
models �circular and triangular in shape� has also been investi-
gated �16,17�. For instance, in NASA, a set of cylinders was
mounted horizontally to investigate the effect of these devices on
flow separation �18�. None of wire or pop-up devices is satisfac-
tory for the specific purpose of this research.

A review of different separation control devices �19� showed
that low profile vortex generator and passive cavity are both ca-
pable to reduce separation; however, the authors suggested that
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vortex generators cause more pressure recovery and therefore are
more applicable for a supersonic diffuser, but passive causes can
reduce wave drag and therefore is more applicable for an airfoil.

A comparison between Wheeler-type �small submerged “owe”
shape� with vane-type vortex generators showed that the Vane-
type counter-rotating vortex generator with h /�=0.8 provides the
largest pressure recovery but also imposes the largest device drag
penalty, but the Wheeler-type reduced the reattachment distance
by up to 66% with higher pressure recovery. The 0.1� height
Wheeler-type performed as well as larger �0.4� height� one.

This work is the latest streams of investigations that have been
done by the authors to show the performance of tetrahedral vortex
generator followed by the same purpose using flat vortex genera-
tor �20�.

2 The Experiment Setup
The experiments were conducted in the M=1.4 supersonic in-

duction wind tunnel at Queen Mary University of London. Al-
though this Mach number is somewhat high for wing applications,
the results obtained from the experiments are likely to be appli-
cable to shock wave boundary layer interactions above M=1.3, in
addition to shock-induced separations in supersonic intakes. The
wind tunnel test section was of rectangular cross-section shape
with glass windows on opposing walls to facilitate Schlieren and
oil flow visualization studies. The tunnel width and height were
127 mm and 135 mm, respectively. Mean-flow pressure measure-
ments were facilitated by the instrumented lower internal wall of
the test section that was designed and manufactured for the pur-
pose of these experiments. The instrumentation included static
pressure tappings and Pitot-probe access ports distributed along
the length of the liner, as shown in Fig. 1�a�.

Two parallel lines of 50 static pressure tappings were located 15
mm either side of the liner centerline, the streamwise spacing
between them being 10 mm. The static pressures could be re-
corded independently to record spanwise pressure variations, by
blocking one tapping, or as an average from both tubes to a single
transducer. A separate Pitot access port dummy-plug was made
with a built-in static pressure tapping to facilitate the measure-
ment of static pressure at three spanwise locations. The stream-

wise spacing of the measurement interval of the Pitot-probe was
30 mm. The Pitot-probe access ports were located along the cen-
terline of the tunnel. From 15� up to 40� downstream of the
interaction, the surface total pressure measurements were taken at
larger intervals of 40 mm. The normal shock was held at the
required location in the tunnel by adjusting a second adjustable
throat; the tunnel injector pressure was kept constant at 760 KPa.

A roughness strip �1 mm in height and 2.5 mm in width� was
used to trip wind tunnel bottom wall boundary layer to a fully
developed turbulent boundary layer.

Total pressure profiles were measured using a flat ended Pitot-
probe with tip dimensions of 0.3�1 mm �Fig. 1�b��.

A source of interference effects appears at supersonic flow,
where a Pitot tube does not indicate the local total pressure. This
is due to a detached shock wave stands ahead of the tube �21�.
Here, the interference effect due to the detached shock wave is
corrected.

The Pitot-probe was designed to enable detailed measurements
to be made very close to the wall. This was made possible by
flattening the tip of the probe to the smallest structurally allowable
size, i.e., up to the limiting condition beyond which the tip sides
were not sufficiently rigid to maintain a rectangular orifice shape.
This ensured that the error induced by the normal velocity gradi-
ent present in a boundary layer would be kept at a minimum. The
smallest possible external tip dimensions achieved were internal
height of 0.1 mm, external height of 0.3 mm, and external width
of 1.37 mm. The probe-tip design was based on the information
provided by Ower and Pankhurst �22�, Bryer and Pankhurst �23�,
and Motallebi �24�. The probe-tip was closely examined to ensure
that no burrs from the manufacturing process obscured the rect-
angular orifice. No tip-displacement correction was applied to the
vertical location of the Pitot tube tip �25�.

In addition, a series of surface total pressure probes of 0.5 mm
tip diameter was used to take measurements at smaller intervals
than the Pitot ports allowed over the length of interest. All pres-
sures were recorded using a Scanivalve digital pressure transducer
array that had a measurement accuracy of 0.5%. The standard
deviation of ten sets of pressure records was always less than
0.06%.

In order to obtain an appreciation of the changes to the flow
structure with the different SBVG configurations, two forms of
flow visualization were utilized. These were conventional black
and white Schlieren imaging and surface oil flow visualization
using a mixture of Shell Tellus oil, titanium dioxide, and oleic
acid.

A computer controlled Digiplan stepper motor has been used to
traverse the boundary layer probe. The accuracy of the movement
of the stepper motor was better than �0.075 mm, which is less
than of 1% of undisturbed boundary layer physical thickness up-
stream of interaction zone. The standard deviation of ten sets of
pressure records by Scanivalve for a certain point is in order of
0.06%.

The SBVG that has been used in these experiments has a tetra-
hedron geometry �Fig. 2�. The model is a modified version of the
DERA’s proposed flat vane model �10�. The smaller SBVG �SS�
had a length of 30 mm with a base dimension of 3�3 mm2. The
longer SBVG had a length of 60 mm with a base dimension of
5�3 mm2. The trailing gap between both SBVGs was 5 mm.
The larger SBVG was used at two streamwise locations upstream
of the location of the shock wave in the freestream flow �i.e.,
17.4� and 25.5��, while the shorter SBVG �SS� was placed at one
location corresponding to 17.4� upstream of the shock position.
Table 1 shows the basic dimensions of the SBVGs used in these
experiments.

3 Results and Discussion
In these experiments, the larger SBVG was placed at two dif-

ferent streamwise locations �130 mm or LS configuration and 190
mm or LL configuration�. For the smaller SBVG �SS configura-

Fig. 1 Test section and Pitot tube
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tion�, only one streamwise location corresponding to 130 mm up-
stream of the shock wave was used. The distances 130 mm and
190 mm correspond to 17.4� and 25.5�, where � is the physical
thickness of the baseline boundary well upstream of the shock-
boundary layer interaction zone.

Streamwise surface static pressure distribution for LS, LL, and
SS configurations are compared with baseline �flow with no
SBVG�, and inviscid pressure jump across the normal shock wave
is shown in Fig. 3. The point of “inflection” for the baseline pro-
duced roughly at the shock location �x /�R=0�. The static pressure
distributions show quite similar behavior for all cases. All con-
figurations start with an almost zero pressure gradient, a relatively
sharp increase followed by a gradual increase further downstream
of the shock wave, approaching to ideal pressure recovery. How-
ever, the LS configuration shows slightly better pressure recovery
in the region about 10� downstream of the shock wave.

The streamwise surface impact pressure �Preston pressure� dis-
tributions for all configurations are compared with the baseline
distribution and is shown in Fig. 4. For all configurations, it shows

the expected rapid decrease in the Preston pressure as the flow
approaches the shock wave. However, the Preston pressure distri-
bution for the LS configuration shows a higher level as compared
with other configurations. As the flow passes the shock location,
the streamwise Preston pressure starts to recover. Compared with
the baseline case, all configurations �in particular, SS and LS�
show a complete elimination of the separation region. It is also
interesting to note the SS case provides the fastest recovery of the
Preston pressure. This indicates that the trailing vortices produced
by SS must have stayed close to the surface and therefore produc-
ing a fuller total pressure profile close to the surface. Both LS and
LL configurations show inferior performance as compared with
SS. Boundary layer velocity profiles for all configurations are
shown in Figs. 5–12.

Figure 5 shows the boundary layer velocity profiles for LS, LL,
SS, and baseline at x /�R=−5.36. It clearly shows that the LL and
SS configurations produce the larger deficit in mean velocity close
to the surface, while the LS configuration produces less distur-
bances in the boundary layer velocity profile close to the surface.

Fig. 2 SBVGs with 30 and 60 mm lengths. Flow direction is from left to right.

Table 1 Basic Dimensions of the SBVGs and their relative locations upstream of the shock
wave

SBVG
L

�mm�
h

�mm�
b

�mm�
G

�mm�
AOA
�deg�

D�

��R�
D�

�mm�

SS 30 3 3 3 29 17.4 130
LS 60 3 5 3 29 17.4 130
LL 60 3 5 3 29 25.5 190

SS=small and short, LS=large and short, LL=large, and long. �R is the reference boundary layer thickness equal to 7.1 mm;
D is the distance between vortex generator and shock wave location.

Journal of Applied Mechanics JULY 2009, Vol. 76 / 041009-3

Downloaded 04 May 2010 to 171.66.16.44. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



This indicates that in the case of LL, the boundary layer must
have a larger displacement thickness and hence shallower velocity
profile upstream of the shock wave. Further downstream at x /�R
=−1.34 �Fig. 6�, LL clearly shows regions of separated flow,
which is the result of an unhealthier boundary layer, a confirma-
tion of the previous statement.

The boundary layer velocity profiles downstream of the shock
wave at x /�R=2.68 �Fig. 7� clearly show that, while in the base-
line case, the flow is separated and the SS configuration starts to
recover faster close to the surface. This trend continues further
downstream, as shown in Figs. 8–11, corresponding to x /�R
=6.7, 10.72, 14.75, and 36.19 downstream of the shock location.
This also agrees with the results obtained for Preston pressure
distributions �Fig. 3�. The recovery of the velocity profile in the
last station �i.e., x /�R=36.19, Fig. 11� shows that, compared with
other configurations �LS and LL�, SS produces a fuller profile.

Figure 12 shows the streamwise distributions of the boundary
layer physical thickness for all configurations. It is clear from this

figure that the LL configuration induces thicker and hence less
stable boundary layer especially closer to the shock location,
which confirms the variations in velocity profiles shown in Figs.
5–11.

The streamwise distribution of the boundary layer displacement
thickness is shown in Fig. 13. This figure as suggested before
indicates that generally LL configuration produces larger flow dis-
placement as compared with SS, which is another indication of
less stable flow within the boundary layer. The variation in the
boundary layer shape factor for all cases is shown in Fig. 14. It
again shows that SS configuration produces lowest shape factor
throughout the interaction as compared with LL, which is another
indication of a fuller velocity profile. All configurations show
much lower H distribution compared with the baseline.

4 Flow Field and Surface Oil Flow Visualization
In order to gain an appreciation of the characteristics of the

flow near the surface, a well-known method for surface flow vi-

Fig. 3 Variation in static pressure ratio along the tunnel for
different configurations

Fig. 4 Variation in dynamic pressure ratio along the tunnel for
different configurations

Fig. 5 Streamwise velocity profile for different configurations
at x /�R=−5.36

Fig. 6 Streamwise velocity profile for different configurations
at x /�R=−1.34

Fig. 7 Streamwise velocity profile for different configurations
at x /�R=2.68

Fig. 8 Streamwise velocity profile for different configurations
at x /�R=6.70

041009-4 / Vol. 76, JULY 2009 Transactions of the ASME

Downloaded 04 May 2010 to 171.66.16.44. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



sualization was employed. A mixture of Shell Tellus oil, titanium
dioxide, and oleic acid �an anticoagulant� was spread thinly and
evenly on the surface of the liner in advance of the dedicated test
run. A high intensity projector lamp was shone through the win-
dow of the working section that was covered with a sheet of
ordinary tracing paper, so that the light would be more evenly
spread onto the tunnel liner. A digital camera was supported on a
tripod on the opposing side of the tunnel that was focused on the
location of interest. As the flow developed, the oil was displaced
by the forces imparted by the near-wall flow. Once the flow de-
velopment had ceased, a still photograph was taken of the devel-
oped flow pattern to be used for later comparisons between the
different SBVG configurations. The exact measures of the ingre-
dients of the mixture were as follows: 40 ml Tellus oil, ten flat
teaspoons of titanium dioxide, and 20 drops Oleic acid. The in-
gredients were mixed vigorously until a smooth solution was ob-
tained and was then left for 1 h before mixing once more prior to
use.

Figures 15�a�–15�c� show the surface oil flow visualization for
the baseline, SS, and LS cases. The center of each vortical struc-
ture labeled “spiral node” formed at 25 mm from the sidewalls of
the wind tunnel. The vortical structure of separation has been
developed symmetrically where at the mid-span region, there is a
region of quasi-two-dimensional flow with a width of about 20
mm. In the case of baseline, the flow was completely reversed in
the centerline. The separation line is around 2� upstream of the
main shock wave, which is well within the location of front leg of
Lambda structure, which is also about the point of rapid rise in
static pressure. The reattachment point in the mid-span is located
at about of separation is about 11.8� downstream of the location
of the main shock.

Fig. 9 Streamwise velocity profile for different configurations
at x /�R=10.72

Fig. 10 Streamwise velocity profile for different configurations
at x /�R=14.75

Fig. 11 Streamwise velocity profile for different configurations
at x /�R=36.19

Fig. 12 Streamwise boundary layer thickness for different
configurations

Fig. 13 Streamwise displacement thickness for different
configurations

Fig. 14 Streamwise shape factor for different configurations
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For SS, the flow around the midspan with a width of about 18
mm has been completely reattached. The separation removal
thickness of the flow at the area of vanished separation is in the
range 15–18 mm, where the leading gap of the pair of vortex
generator is also 18 mm. Similar observation can be seen in the
case of LS configuration.

For flow field flow visualization, the Z-Type Schlieren system
was used to visualize flow field around the interaction region.
Figure 16 shows a noticeable reduction in the extent of Lambda
shock system for both SS and LS devices. The figure demonstrates
the bifurcation height, which is almost equal for SS and LS and
shorter than the baseline case: bifurcation point in baseline is

Fig. 15 Visualization of separation: „a… baseline, „b… SS, and „c… LS. Location of shock wave is
above the separation line.
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0.042 m and reduced to 0.033 m and 0.033 m for SS and LS.
Boundary layer thickness in baseline is 0.017 m and in SS and LS
are 0.019 m and 0.02 m, correspondingly.

Both methods of flow visualization show agreement with the
flow measurements in terms of the effects of SBVGs on the extent
of the boundary layer separation.

5 Conclusion
The performance of tetrahedral vortex generators with different

lengths and different locations were examined by studying the
development of boundary layer profile and the streamwise varia-
tion in the Preston pressure. The results can be listed as follows.

• Sub-boundary vortex generator are capable to produce vor-
tices without considerable parasitic drag.

• Tetrahedral vortex generator here called SS model could to-
tally vanish the shock wave boundary layer separation.

• The long model �LS� located at 17.4�R is capable to elimi-

nate the separation. This model is mounted in a larger dis-
tance �25.5�R� called LL, to verify if a larger distance can be
effective enough when the device is longer. The result indi-
cated that an increase in the distance for the long device
from 17.4�R to 25.5�R did not remove the separation en-
tirely. A comparison between SS and LS in Preston pressure
shows that SS in the area of separation and further points
has a higher total pressure, where its displacement thickness
and shape factor are lower. Therefore, SS has a better
performance.
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Fig. 16 Schlieren visualization of the affected area: „a… baseline, „b… SS, and „c… LS
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Nomenclature
H � shape factor
h � vortex generator height

M � Mach number
P � pressure

Ps � wall static pressure
Pstg � settling chamber stagnation pressure

Pt � total pressure
Re � Reynolds number
U� � velocity at edge of boundary layer
X � streamwise coordinate direction
Y � vertical coordinate �normal to the wall�
� � boundary layer thickness

�R � boundary layer thickness at reference point
�� � displacement thickness
� � momentum thickness
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The concept of domain integral used extensively for J integral has been applied in this
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crack at the interface and subjected to thermal loading. It is shown that, in the presence
of thermal stresses, the Jk domain integral over a closed path, which does not enclose
singularities, is a function of temperature and body force. A method is proposed to
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1 Introduction
Interfacial delamination and fracture are commonly observed

problems in many of the advanced composite materials that are
used heavily in aerospace, nuclear industry, and microelectronics
field. The important parameters for evaluating the delamination
fracture strength are Mode 1 and Mode 2 stress intensity factors
�SIFs� or the energy release rate of a crack between the two dis-
similar materials. For practical applications, the SIFs of bimaterial
interface cracks are generally obtained by the finite element
method �FEM�. Energy approaches such as the crack closure in-
tegral method �1�, the J-integral method �2�, and the virtual crack
extension method �3� are reliable methods for calculating the en-
ergy release rate using FEM.

Fracture at a bimaterial interface is essentially mixed mode,
even when the geometry is symmetric with respect to a crack, and
loading is pure Mode 1. This is due to the differences in the elastic
properties across an interface, which would disrupt the symmetry
�4�. Consequently, both tensile and shear stresses act on the inter-
face ahead of the crack, and opening and sliding displacements of
the crack flanks occur behind the crack tip. The linear elastic
solutions of the crack-tip stress and displacement fields show that
the stresses and displacements ahead of the crack front behave in
an oscillatory manner. Due to this oscillatory behavior, the defi-
nition of the stress intensity factors needs special consideration,
and in addition crack face contact may occur for a small distance
near the crack tip. Mode 1 and Mode 2 stress intensity factors
cannot be decoupled to represent tension and shear stress fields, as
seen in the case of homogeneous materials. The Appendix gives
the linear elastic stress and displacement fields for a crack lying
between the interfaces of two different materials. In order to ob-
tain the SIFs, combinations of different methods have been pro-
posed by different researchers. A combination of the J-integral
and the superposition method with FEM known as the M-integral
method was applied by Yau and Wang �5�. Matos et al. �6� applied
the virtual crack extension method to the calculation of mixed-
mode SIFs for interface cracks in conjunction with the superposi-
tion method and FEM. Banks-Sills et al. �7� used the M-integral in

conjunction with FEM and the concept of traction weight function
to determine the stress intensity factors arising from residual ther-
mal stresses in a bimaterial finite body. The M-integral method
with virtual crack extension method and the boundary element
method �BEM� have been used by Miyazaki et al. �8,9� for the
determination of fracture parameters. Ryoji and Sang-Bong �10�
applied the displacement extrapolation method along with the
BEM.

The problem of determining the SIFs of bimaterial interface
cracks when subjected to thermal loads becomes more compli-
cated. A great amount of residual stresses are developed near an
interface between dissimilar materials because of the differences
in the coefficient of linear thermal expansion between the two
jointed materials. Hence, thermal stresses play an important role
in an interface crack than for a crack in a homogeneous material
�11�. However, none of the techniques mentioned above can ana-
lyze the SIF of an interface crack in the presence of thermal loads.
Studies on this coupled thermomechanical stress fracture problem
due to the local intensification of temperature gradient and stress
field in recent years have led to significant progress in analytical
research. Among the available methods �10–15� for calculating
fracture parameters in the literature, the conservative M-integral
method used in conjunction with the domain integral method
given recently by Banks-Sills and Dolev �12� are well suited for
bimaterial thermal interface problems. However, this method re-
quires an auxiliary stress and displacement field for a given crack
configuration, thus making the computations tedious.

The domain integral method has emerged as being well suited
for bimaterial interface crack problems. In the domain integral
method, a crack-tip contour integral is expressed as a volume
integral over a finite domain surrounding the crack tip. The pro-
cess of recasting the contour line integral into an area integral for
2D problems and surface integral into a volume integral for 3D
problems is advantageous for numerical purposes because accu-
rate fracture parameters can be obtained without having to pre-
cisely capture the details of the singular fields in the vicinity of the
crack tip.

The subject of path-independent integrals �Jk� of fracture me-
chanics has received considerable attention from researchers
�15–18� with regard to numerical determination of the mixed-
mode stress intensity factors. Khandelwal and Chandra Kishen
�19� proposed an analytical expression for Jk integral for bimate-
rial interface problem subjected to mechanical loading and
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showed that this integral is path independent in a modified sense
and is useful in the determination of stress intensity factors of
bimaterial interface cracks. Jk integrals are line integrals evaluated
along a counterclockwise contour enclosing and shrinking onto
the crack tip. Knowles and Sternberg �20� defined Jk as a complex
quantity given by

J = J1 − iJ2 �1�

The quantity J corresponds to the energy release rate for the
movement of crack edge in any direction. For homogeneous me-
dia with traction-free crack surface, both components of J, J1 and
J2, are path independent. Although J1 can start anywhere from the
lower crack surface and end anywhere along the upper crack sur-
face, the same does not hold true for J2 wherein two additional
line integrals along the crack surfaces are added up, which causes
the inclusion of a singular region in the integration. Therefore,
direct calculation of J2 from numerical solution becomes a tedious
job. To overcome the difficulty in calculating J2, an approximate
analytical expression for J2, in conjunction with the finite element
method, has been proposed by Khandelwal and Chandra Kishen
�19� for bimaterial interface subjected to mechanical loading.

In this work, the concept of J2 domain integral is proposed for
computing the stress intensity factors of bimaterial interface
cracks subjected to thermal loads. It is shown that, in the presence
of thermal stress, the Jk domain integral over a closed path, which
does not enclose singularities, is a function of temperature and
body force. A method is proposed to compute the stress intensity
factors for bimaterial interface crack subjected to thermal loading
by combining this domain integral with the Jk integral. The pro-
posed method is validated by solving standard problems with
known solutions.

2 Formulation
The path-independent integral Jk for a 2D elastic isothermal

homogeneous material in the absence of body forces and thermal
loading can be expressed as

Jk = lim
��→0.��

�Wel�ki − �ijuj,k�nid� �2�

where Wel is the elastic strain energy density and in the present
isothermal case is equal to total strain energy density, WT, as both
elastic and total strains are equal in isothermal case. ni is the unit
outward normal to the closed path �� taken in anticlockwise
sense, as shown in Fig. 1, ui is the displacement vector referred in
the Cartesian coordinate system, �ij is the stress tensor, and d� is
the arc length measured along the contour ��.

Here

Wel =�
0

�el

�ijd�ij
el �3�

WT = Wel = 1
2�ij�ij �4�

where �ij is the total strain and in present case is equal to elastic
strain �ij

el. �ij may be represented as

�ij = ��kk�ij + 2��ij �5�

where �ij is the Kronecker delta function defined as follows:

�ij = �1 when i = j

0 when i � j
� �6�

� is the shear modulus and � is the Lame’s constant, which is
given by

� =
�E

�1 + ���1 − 2��
for plane strain

�7�

� =
�E

�1 − �2�
for plane stress

Here E is the modulus of elasticity and � the Poisson ratio. In the
presence of thermal loads, the stress field is modified and can be
written in the Duhamel–Neumann constitutive equation as

�ij = ��kk�ij + 2��ij − 	
�ij, i, j,k = 1,2

�33 = ��kk − 	
 for plane strain �8�

�33 =
1 + �

1 − �
�
 −

�

1 − �
�kk for plane stress

Here �kk=�11+�22. If � be the coefficient of thermal expansion,
then 	 is defined as

	 =
E�

�1 − 2���
for plane strain

�9�

	 =
E�

�1 − ��
for plane stress

It may be mentioned here that, in the presence of body forces and
thermal loads, the total strain energy density WT is still related to
the stress and strain tensors, as given in Eq. �4�. However, in this
case, the elastic strain energy density Wel of the system is different
from total strain energy density WT. Wel and WT are related by

Wel = 1
2�ij��ij − �
�ij� = WT − 1

2�
�ii �10�

Let us define the term WF, called thermo-elastic strain energy
density, where

WF = WT − 	
2 
�ii �11�

In the presence of body force, mechanical, and thermal loads,
using the chain rule of differentiation, the derivative of different
form of the strain energy density with respect to coordinate axis xk
can be written as

�Wel

�xk
=

�WT

�xk
−

�

2
�
�ii,k + 
,k�ii�

�WT

�xk
=

�

�xj
��ij

�ui

�xk
	 + f i

�ui

�xk
+ 	
1

2
�
�ii�,k − 
,k�ii� �12�

�WF

�xk
=

�

�xj
��ij

�ui

�xk
	 + f i

�ui

�xk
− 	
,k�ii

2.1 Domain Integral. It has been shown in Ref. �21� that
conservative area integrals produce more stable results than the
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line integrals. Hence, in this work, the Jk line integral as defined
above is first applied to the bimaterial crack configuration system
and then converted into its domain integral form.

Redefining the Jk line integral of Eq. �2� in terms of an outer

unit vector mi, normal to the area Ā, enclosed by the loop �̄, and
excluding the area enclosed within ��, where mi=−ni on ��, as
shown in Fig. 1, we obtain

Jk = lim
��→0.��

��ijuj,k − Wel�ki�mid� �13�

Shown in Fig. 2 are two elastic half planes of different materi-
als bounded together with material: Occupying y�0 has Young’s
modulus E1, Poisson’s ratio �1, and thermal expansion coefficient
�1, whereas that occupying y
0 has the respective values as E2,
�2, and �2. Also, the plane defined by x
0 and y=0 is unbounded
and represents a crack. �1 and �2 are closed contours taken arbi-
trarily in the anticlockwise direction with the contact points on
crack surface and interface at the same distance from the crack tip.
The inner paths, ��1 and ��2 are semicircular anticlockwise con-
tours having the same radius � about the crack tip. Now, the

summation of the above two closed contour defined as �̄ is written

as �̄=�1+�2, and �1=�l
++�1+�c

+−��1 and �2=�c
−+�2+�l

−

−��2. Also, A1 and A2 are the simply connected domain area
enclosed by closed contours �1 and �2, respectively, and the

whole area can be written as Ā=A1+A2.
Furthermore in Fig. 2, the areas A1 and A2 are shown to be

divided into shaded and unshaded parts. The shaded part of Fig. 2
represents area A that is further divided into two parts, A1 and A2,
in the upper and lower materials, respectively. The inner core area
�unshaded� A0 is composed of A01 and A02 as shown. Hence,

Ā = A1 + A2 = A1 + A01 + A2 + A02 = A0 + A �14�
For the sake of clarity and conciseness, let us take

L = ��ijuj,k − WF�ki� �15�

where WF is as defined in Eq. �11�. Multiply L with some arbitrary
function q, which is smooth and continuously differentiable

within area Ā whose value equals to unity on �� and zero on outer
contours, �1 and �2, respectively �22,21�. The distribution of

function q within the domain of Ā is as shown in Fig. 3, which
shows that q is further assumed to be unity within the unshaded
domain A0. The function q defined within an eight-noded isopara-
metric element is �21�

q = �
m=1

8

Nm��,��qm �16�

where Nm are the finite element shape functions of an eight-noded
isoparametric element, � and � are the coordinates in the parent
element, and qm is the value of q at the nodal points.

The calculation of the J-integral is carried out within a ring of
elements at a distance from the crack tip. This is seen to produce
better results as compared with performing calculations within the
crack-tip elements. The elements within the ring move as a rigid
body. For each of these elements, q is unity, so that the derivative
of q with respect to xj is zero. For all elements outside the ring, q
is zero, so that again the derivative of q is zero. For elements
belonging to the ring, the vector qm in Eq. �16� is chosen so that
the virtual crack extension does not disturb the relative nodal
point positions in their new locations; for example, a regular ele-
ment with nodes at the midsides contains only midside nodes after
distortion �21�.

Taking separately the integral of function L given in Eq. �15�
along the upper and lower closed loops �1 and �2, respectively,
we obtain for n=1,2,

In =
.

�n
��ijuj,k − WF�ki�qmid� �17�

Equation �15� can be expanded as

.
�1

�L�qd� =�
�c

+
�L�qd� +

.
�1

�L�qd� +�
�l

+
�L�qd�

−
.

��1

�L�qd� �18�

.
�2

�L�qd� =�
�c

−
�L�qd� +

.
�2

�L�qd� +�
�l

−
�L�qd�

−
.

��2

�L�qd� �19�

Since the function q vanishes along the outer contour, the inte-
grands along �1 and �2 will be zero. Furthermore, the integrals
along ��1 and ��2 can be combined and written as

Γ1

2Γ

E1 ν1 α1

E 2 ν2 α 2

m i

n i
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Since m1=0 and m2= �1 on �c
−, �c

+, �l
−, and �l

+, the above equa-
tion for traction-free crack surface is simplified to

.
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Jk-integral is defined, with its second part in terms of elastic
strain energy density Wel, as shown in Eq. �13�. Converting WF of
the left hand side of the Eq. �21� to Wel using Eq. �11� and taking
the limit as �→0,
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��→0.��
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Now for two dimensional bodies, the second integral in the left
hand side of above equation is reduced to 0. Using Eq. �13�,

Jk =
.
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Now applying the divergence theorem to the first line integral
of Eq. �23�, we obtain

Jk =�
A1+A2

�

�xi
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�c
−+�c

+
WFqm2�k2d�
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Here, areas A1 and A2 are as discussed earlier. Differentiating the
first integrand of Eq. �24� and simplifying, we obtain using Eq.
�14�

Jk =�
A0+A

���ijuj,k − WF�ki��
�q

�xi
dA +�
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The conditions along straight crack surface and interface, which
are parallel to x-axis requires the following conditions to be sat-
isfied.

1. m1ds=n1ds=dy=0.
2. m2=n2= +1 for �c

− and �l
−.

3. m2=n2=−1 for �c
+ and �l

+.
4. For traction-free crack surfaces, �ijmi=0.

5. Continuity conditions of displacements and tractions across
the interface requires �
uj
�=0 and �
� j2
�=0.

Furthermore, q=1 and �q /�xi=0 in domain A0. Using Eq. �12�
and the above mentioned conditions, Eq. �25� reduces to

Jk =�
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The above equation for k=1,2 in the absence of body forces
would reduce to

J1 =�
A
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�q
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where A0�=A01+A02� indicates the area A0, which excludes the
inner core area of radius �.

If we allow the outer path to be arbitrary, but make the inner
path circular with radius � about the crack tip, as shown in Fig. 1,
then the integral in Eq. �27� for the limit when ��→0 will be
reduced to the well known J-integral �J1 in our case�. Further-
more, Eq. �28� does not converge to a certain fixed value; it is
defined for a very small value of � lying within the singularity
dominated zone and is defined as the J2-integral. As explained in
the previous work of the authors �19�, for the limit as ��→0, Eqs.
�27� and �28� can be reduced to closed form expressions in terms
of stress intensity factors as

J1 = 
 �1 + �1�
16�1

+
�1 + �2�

16�2
��K1

2 + K2
2� �29�

J2� = −
1

32��

 �1 + �1�

�1
�1 − e−2��� +

�1 + �2�
�2

�e2�� − 1��
��K1

2 − K2
2�sin 2� log��� + 2K1K2 cos 2� log���� �30�

where A1� and A2� are the areas within the upper and lower closed
loops �1 and �2, respectively. � j is the shear modulus of material
j, � j = �3−� j� / �1+� j� for plane stress, � j =3–4� j for plane strain,
and � j is Poisson’s ratio of material j. � is the bimaterial constant
as defined in the Appendix.

2.2 Computation of Bimaterial Stress Intensity Factors.
The main objective of this work is to compute the stress intensity
factors for bimaterial interface cracks when subjected to thermal
loads, and this is done using the above definitions of J1 and J2�.

Equations �29� and �30� can be written in the form

�K1
2 + K2

2� = B1J1 �31�
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where
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Elimination of K2 from Eqs. �31� and �32� results in

K1
4�4C1

2 + 4C2
2� − 4K1

2�J1B1�C1
2 + C2

2� + J2�C1� + �J1B1C1 + J2��2 = 0

�33�

Hence, K1 can be obtained by solving the above equation. Substi-
tuting for K1 in Eq. �31�, we can compute K2.

The sign of K1 and K2 are determined by monitoring the mag-
nitude of the crack opening displacement near the crack tip. The
crack opening displacement may be defined as

�u = u+ − u− �34�

�v = v+ − v− �35�

where the + and � sign refers to the upper and lower crack faces,
respectively. The signs of K1 and K2 correspond to the signs of �u
and �v.

3 Validation
In order to validate the domain integral formulation, three

benchmark problems of plane strain, one under uniform tempera-
ture and the other two under thermal flow, are considered. The
domain integral calculation of both J1 and J2� have been com-
puted using a newly developed finite element and fracture analysis
code using MATLAB with eight-noded isoparametric elements for
both mechanical and thermal analysis. The preprocessing input for
this code is obtained from ANSYS �23�.

To determine the optimized mesh size and the sensitivity of
mesh refinement on the Jk domain integral, convergence studies
has been performed. Based on this study, an optimized mesh size
is used for computation of the Jk domain integrals. Mesh refine-
ment is done in the region surrounding the crack tip for the body
subjected to thermal loads. In the region away from the crack tip,
a uniform mesh is used.

3.1 Dissimilar Semi-Infinite Plate With Double Edge
Crack Subjected to Uniform Temperature Change. A jointed
dissimilar semi-infinite plate with double edge crack subjected to
uniform temperature change of 100°C �11� is analyzed under
plane strain conditions. The geometry of the plate is shown in Fig.
4. Due to the symmetry in geometry and loading about the y-axis,
only the left half is analyzed. The dimensions of the plate are
taken as 200 units�400 units with the jointed interface of 1 unit
length. The material properties used in the analysis are shown in
Table 1 and are assumed to be independent of temperature varia-
tion. Figures 5 and 6 show the displacement boundary condition
and finite element mesh along with the contours used, respec-
tively. The same finite element mesh is used for thermal analysis
too.

The results of the convergence study on this problem are shown
in Fig. 7 for a value of �=8.845�10−3. It is seen that with in-

creasing mesh density, the computed value of J2� converges to the
analytically obtained value. It is observed that for a finite element
mesh with 15,000–17,000 number of elements, there is very little
variation in calculated J2�. The variation in computed J1 is found
to be within 1% of the analytical value for all the mesh sizes
considered in this study. As a trade-off between solution accuracy
and computation time, a finite element mesh of 15,869 eight-
noded elements with 48,320 nodes have been used for subsequent
analysis. The solution in terms of the stress intensity factors for
this problem was given by Erdogan �24� as

Table 1 Material properties used in the analysis

Properties Material 1 Material 2

Young modulus �Pa� 1000�109 100�109

Poisson ratio 0.3 0.3
Temperature �°C� 100 100
Coefficient of thermal
expansion �/°C� 1.0�10−6 1.0�10−7

Coefficient of heat
conduction �W /m °C� 100 100

y

ν α
2 2

1 1ν α

b b

Material 1

Material 2
E 2

E1

x

Fig. 4 Semi-infinite bimaterial plate subjected to constant uni-
form temperature load

o
o

o
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o
o

O

material 1

material 2
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x

Fig. 5 Displacement boundary condition for jointed dissimilar
semi-infinite plate with double edge crack under uniform tem-
perature load

Journal of Applied Mechanics JULY 2009, Vol. 76 / 041010-5

Downloaded 04 May 2010 to 171.66.16.44. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



K̂1 = − 2��0��2�2 − �1�1��T��b�2b�−i�

�36�
K̂2 = − �0��2�2 − �1�1��T��b�2b�−i�

where �i=1 for plane stress and �i=1+�i for plane strain case; �0
is defined by

�0 =
4�1�2 cosh����

��1 + �2�1 + �1�2 + �2�
�37�

where �1 and �2 are the coefficients of linear thermal expansion
for materials 1 and 2, respectively. �T is the temperature
excursion.

Let K0=���b, where �=�0��2�2−�1�1��T. The normalized
complex stress intensity factor is defined as

K̃ =
K̂Li�

���a
�38�

where L and a are the length parameters and � is stress. For the
present case, normalized stress intensity factors with L=2a and
a=b can be written as

K̃1 = − 2�

�39�
K̃2 = 1

Since the body is subjected to an uniform temperature distribu-
tion, the area integral part involving temperature in Eq. �27� be-
comes zero and the equation reduces to the normal domain inte-
gral. Similarly, in Eq. �28�, the area integral involving temperature
vanishes.

The J1 and J2� domain integrals have been computed using a
new finite element and fracture analysis code developed using
MATLAB. The J1 domain integral is obtained using only the outer
contour, whereas the J2� domain integral is computed together
with the line integral along the outer contour incorporating the
portion of material interface. Three different contour paths are
considered in order to demonstrate the path independence of the
J1 integral.

Table 2 shows the results of J1 domain integral obtained for the
three different paths together with the analytical result. It is seen
that the error in the average of all the three paths of the J1 integral
is almost negligible. Furthermore, there is no variation in the com-
puted J1 values for the three different paths, thus demonstrating
the path independence.

Table 3 shows the results of J2� computed for four different
values of the inner circle of radius � and also for three different
integration paths. It is seen that the computed results are in close
agreement with the analytical ones. In addition, the results do not
vary much for the three different paths indicating the path inde-
pendence of J2� integral.

Table 4 shows the normalized Mode 1 and Mode 2 stress inten-
sity factors for the four different values of � together with the
analytical values, as given by Erdogan �24�. It is seen that there is
good agreement in the computed solution with an average error of

about �0.03% in K̃1 and �0.02% in K̃2. It may be noted that the

SIF K1+ iK2 defined in this paper is related to the SIF K̂1+ iK̂2
defined in the work by Erdogan �24� as

K1 + iK2 =
�K̂1 + iK̂2�
cosh ��

�40�

3.2 Jointed Dissimilar Semi-Infinite Plates With Double
Edge Cracks Subjected to Uniform Thermal Flow. In this case
study, a semi-infinite bimaterial plate with double edge cracks and
subjected to constant heat flux of qf =105 W /m2 in the negative

Fig. 6 A typical FE mesh and shape of the contour path used
for all the problems

1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8

x 10
4

−235

−230

−225

−220

−215

−210

−205

N number of Elements

J
2
ρ

In
te

gr
al

FEA Value

Analytical Value

J
2ρ = −229.61

Fig. 7 Influence of mesh refinement on J2� for jointed dissimi-
lar semi-infinite plate with double edge crack „�=8.845Ã10−3

…

Table 2 Results of the J1 integral for all the three case studies „plane strain…

J1 Analytical Path 1 Path 2 Path 3 Average % Error

Case study 1 549.38 549.39 549.36 549.35 549.36 0.003
Case study 2 14050.12 14054.9 14054.5 14054.23 14054.5 �0.03
Case study 3 1.2477�108 1.2484�108 1.2483�108 1.2482�108 1.2483�108 �0.045
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y-direction is considered �Fig. 8�. The material properties are the
same as those considered in the previous case study, as depicted in
Table 1. Since the geometry of this plate and the one considered in
the previous case study are the same, the same finite element mesh
is used here with plane strain conditions. Figure 9 shows the left
half of the geometry with displacement and thermal boundary
conditions. No thermal insulation is assumed along the cracks.
This is achieved by making the coincident nodes on the crack
surfaces to coincide in the thermal analysis. Only during mechani-
cal load analysis the constraints on the nodes lying on the crack
surfaces are removed.

Ikeda and Sun �11� solved this problem numerically using the
virtual crack extension method along with superposition method,
and Banks-Sills and Dolev �12� solved using the M-integral con-
cept. Brown and Erdogan �25� presented the exact solution for the
thermal stress intensity factors as

K1 =
qf�0��2�2k1 − �1�1k2�b��b�1 − 4�2�

2k1k2
�2b�−i�

�41�

K2 =
qf�0��2�2k1 − �1�1k2�b��b�2��

k1k2
�2b�−i�

where �1 and �2 are as defined in the previous case study, k1 and
k2 are the coefficients of heat conduction, and qf is the thermal
flow.

Since the crack surfaces are not insulated, i.e., the presence of
crack does not influence the temperature distribution, the effect of
far field flux on the body in negative y-direction will cause linear
variation in temperature as a function of y. Therefore, the area
integral part involving the temperature in Eq. �27� vanishes and
the whole expression on the right hand side reduces to the normal
domain integral. On the other hand, in Eq. �28�, the area integral
involving the temperature is nonzero as such with temperature
gradient in the y-direction attaining a constant value.

The J1 and J2� integrals have been computed as in the previous
case study. Table 2 again shows the results of the J1 integral
computed for the three different paths along with the analytical
results. It is seen that the error in the average of all three paths of
the J1 integral is less than 0.05%. Furthermore, there is negligible
variation in computed J1 values for the three different paths, thus
demonstrating the path independence.

Table 5 shows the results of J2� computed for the four different
values of the inner circle of radius � and also for three different

Table 4 Case study 1: normalized Mode 1 and Mode 2 stress
intensity factors for different values of � „plane strain…

� K̃1 K̃2

6.591�10−3 �0.09889 1.0069
8.845�10−3 �0.09887 1.0067
1.004�10−2 �0.09880 1.0068
1.259�10−2 �0.09883 1.0070
Average �0.09885 1.0068
Erdogan’s solution �0.09888 1.0066
% error �0.03 �0.02

Table 3 Case study 1: results of J2� for different values of � „plane strain…

� Analytical J2�

Numerical J2�

Average J2� % errorPath 1 Path 2 Path 3

6.591�10−3 �247.22 �252.71 �249.9 �248.90 �250.33 �1.26
8.845�10−3 �229.61 �232.16 �229.27 �228.9 �230.11 �0.22
1.004�10−2 �221.88 �219.4 �218.93 �218.37 �218.9 1.34
1.259�10−2 �207.87 �205.19 �205.08 �204.34 �204.87 1.44
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Fig. 8 Semi-infinite bimaterial plate with noninsulated crack
subjected to uniform thermal flow
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Fig. 9 Displacement and thermal boundary conditions for
jointed dissimilar semi-infinite plate with noninsulated double
edge crack under uniform thermal flow
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integration paths. It is seen that the computed results are in close
agreement with the analytical ones. In addition, the results do not
vary much for the three different paths indicating the path inde-
pendence of J2�-integral.

Table 6 shows the normalized Mode 1 and Mode 2 stress inten-
sity factors for four different values of � together with the ana-
lytical values, as given by Erdogan �24�. It is seen that there is
good agreement in the computed solution with average errors of

�0.01% in K̃1 and �0.03% in K̃2.

3.3 An Infinite Body With Insulated Central Crack Sub-
jected to Uniform Thermal Flow. In this case study, analysis is
done on an infinite body with central insulated crack subjected to
constant heat flux of qf =105 W /m2 in the negative y-direction
under plane strain conditions, as shown in Fig. 10. Both the me-
chanical and thermal properties are considered to be the same as
in the previous examples. The dimensions of semi-infinite plate
are taken as 80 units�160 units with a crack length of 4 units.
Taking advantage of the symmetry in geometry and loading, only
the right half of this bimaterial infinite plate is modeled using the
finite element software ANSYS �23�. Figure 11 shows the right

half of the geometry with displacement and thermal boundary
conditions.

The results of the convergence study on this problem are shown
in Fig. 12 for a value of �=7.806�10−3. It is seen that with
increasing mesh density, the computed J2� converges to the ana-
lytically obtained value, and for FE mesh using 17,000–19,000
number of elements there are very little variations. Therefore, a
finite element mesh consisting of 17,882 elements with 54,195
nodes have been used for subsequent analysis. The finite element
mesh and contour path used for this problem are of the same type,
as shown in Fig. 6. In this example, all integrals in Eqs. �27� and
�28� are nonzero and contribute to J1- and J2-integrals, thereby
increasing the complexity of computations.

As in the previous two cases, Table 2 shows the results of
J1-integral obtained for three different contour paths together with
the analytical results. The analytical values shown in this table are
taken from Ref. �12�. It is seen that the error in the average of
all the three paths of the J1-integral is less than 0.05%. Further-
more, the variation in the computed J1 values for the three differ-
ent paths does not vary much, thus demonstrating the path
independence.

Table 7 shows the results of J2� computed for four different
values of the inner circle of radius � and also for three different
integration paths. It is seen that the computed results are in close
agreement with the analytical ones. In addition, the results do not
vary much for the three different paths indicating the path inde-
pendence of J2� integral.

Table 8 shows the normalized Mode 1 and Mode 2 stress inten-
sity factors for the four different values of � together with the

Table 5 Case study 2: results of J2� for different values of � „plane strain…

� Analytical J2�

Numerical J2�

Average J2� % errorPath 1 Path 2 Path 3

3.534�10−3 4.146�103 4.312�103 4.251�103 4.060�103 4.209�103 �1.5
5.530�10−3 3.388�103 3.485�103 3.434�103 3.326�103 3.415�103 �0.80
7.695�10−3 2.818�103 2.861�103 2.82�103 2.701�103 2.794�103 0.83
8.845�10−3 2.575�103 2.584�103 2.564�103 2.484�103 2.544�103 1.2

Table 6 Case study 2: normalized Mode 1 and Mode 2 stress
intensity factors for different values of � „plane strain…

� K̃1 K̃2

3.534�10−3 0.4959 0.1258
5.530�10−3 0.4958 0.1258
7.695�10−3 0.4959 0.1258
8.845�10−3 0.4958 0.1257
Average 0.4959 0.1258
Erdogan’s solution 0.4958 0.1257
% error �0.01 �0.03
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Fig. 10 Semi-infinite bimaterial plate with insulated central
crack subjected to uniform thermal flow
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Fig. 11 Displacement and thermal boundary conditions for
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analytical values obtained from Ref. �12�. It is seen that there is
good agreement in the computed solution with average errors of
�0.03% in K1 and 0.27% in K2.

4 Conclusions
For a homogeneous crack problem, closed form expression for

J2 is available and it is physically identified as the energy release
rate due to the crack tip advancing normal to its original orienta-
tion but the same cannot be said for bimaterial interface crack
problems since it is shown to be nonexistent. In this work, the
concept of J2 domain integral is proposed for computing the stress
intensity factors of bimaterial interface cracks subjected to ther-
mal loads. It is shown that, in the presence of thermal stress, the Jk
domain integral over a closed path, which does not enclose sin-
gularities, is not equal to zero but is the function of the tempera-
ture and body force. A method is proposed to compute the stress
intensity factors for bimaterial interface crack subjected to thermal

loading by combining this domain integral with the Jk integral.
The proposed method is validated by solving standard problems
with known solutions.

In order to properly characterize the near-tip behavior, it is
required that the cutoff radius � be taken small enough so the
integration contour for J2� be inside the region dominated by sin-
gularity zone. It is seen that the results of K1 and K2 are insensi-
tive to different selections of �.

Appendix: Elastic Fields for Interface Cracks
Williams �26� performed an asymptotic analysis of the elastic

fields at the tip of an open interface crack and found that the
stresses and displacements behaved in an oscillatory manner as

� � r−1/2�sin,cos��� log r� �A1�

u � r1/2�sin,cos��� log r� �A2�

� =
1

2�
log��1�2 + �1

�2�1 + �2
	 �A3�

where � j is the shear modulus of material j, � j = �3−� j� / �1+� j�
for plane stress and � j =3–4� j for plane strain, and � j is Poisson’s
ratio of material j.

Considering the bimaterial interface crack in Fig. 13, for
traction-free plane problems the near-tip normal and shear stresses
�yy and �xy may conveniently be expressed in terms of complex
stress intensity factors �27� as

�yy + i�xy =
�K1 + iK2�ri�

��2�r�
�A4�

where i=�−1, K1 and K2 are the components of the complex
stress intensity factor K=K1+ iK2. From Eq. �A4�, it is seen that
the usual definition of the stress intensity factors as
limr→0��2�r�1/2�� will not work and it produces logarithmically
infinite factors. Furthermore, any attempt to define the stress in-
tensity factors without reference to a characteristic length, such as
the crack length, will produce dimensionally meaningless results
�28�.

Table 8 Case study 3: normalized Mode 1 and Mode 2 stress
intensity factors for different values of � „plane strain…

� K̃1 K̃2

5.607�10−3 �4.1175 0.4232
7.806�10−3 �4.1174 0.4233
1.99�10−3 �4.1174 0.4234
1.146�10−2 �4.1174 0.4235

Average �4.1175
Erdogan’ssolution �4.1163 0.4245

% error �0.026 0.27
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Fig. 12 Influence of mesh refinement on J2� for semi-infinite
bimaterial plate under uniform thermal flow „�=7.806Ã10−3

…

Table 7 Case study 3: results of J2� for different values of � „plane strain…

� Analytical J2�

Numerical J2�

Average J2� % errorPath 1 Path 2 Path 3

5.607�10−3 8.767�107 8.912�107 8.863�107 8.850�107 8.875�107 �1.22
7.806�10−3 8.469�107 8.685�107 8.457�107 8.298�107 8.480�107 �0.13
8.976�10−3 8.336�107 8.391�107 8.281�107 8.198�107 8.290�107 0.55
1.146�10−3 8.096�107 8.213�107 7.979�107 7.909�107 8.033�107 0.77
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Fig. 13 A bimaterial interface crack
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Vibration and Snap-Through of
Bent Elastica Strips Subjected to
End Rotations
A flexible strip is rotated at its ends until it forms a deep circular arc above its ends. Then
the ends are kept immovable and are rotated downward until the arch suddenly snaps into
an inverted configuration. The strip is analyzed as an inextensible elastica. Two-
dimensional equilibrium shapes, vibration modes and frequencies, and critical rotations
for snap-through are determined using a shooting method. Experiments are also con-
ducted and results are compared with those from the analysis. The agreement is good. In
addition, a microelectromechanical systems (MEMS) example is analyzed, in which an
electrostatic force below a buckled strip causes the strip to snap downward, and the
critical force is obtained as a function of the vertical gap. �DOI: 10.1115/1.3086783�

Keywords: bent elastica, snap-through, vibration

1 Introduction
Snap-through of arches or buckled beams is an interesting phe-

nomenon. Most previous studies have considered downward loads
that can cause the structure �in whole or in part� to suddenly jump
from a configuration above the horizontal line connecting its end
supports into an inverted configuration below the horizontal. Such
behavior can be useful in switches, for example, and there has
been recent interest in applications for MEMS �1,2�. Snap-through
can also be induced by rotation of the ends of the structure. Analy-
ses of shallow arches under end rotations have been presented in
Refs. �3–5�, and this type of “loading” �displacement control� is
investigated here for nonshallow �deep� bent strips.

A related problem was analyzed in Ref. �6�. A flexible strip was
attached at its ends to a substrate comprised of two rigid plates
connected with a hinge. The plates were initially flat, and then one
of the plates was rotated upward. In contrast to that problem, here
the ends of the strip remain a fixed distance apart rather than
coming together. Also, experiments are included in the present
study.

A slender elastic strip is considered. It is unstrained when
straight, and the ends are rotated and moved so that, when self-
weight is neglected, the strip has an initial circular shape with
constant bending moment and no internal axial or shear forces.
Then the ends are rotated downward quasistatically with equal
magnitudes, so that the resulting equilibrium shapes remain sym-
metric about the midpoint of the strip. A portion of the strip near
each end displaces below the horizontal. At a critical end rotation,
the central portion of the strip suddenly snaps downward into an
inverted position. The equilibrium shapes before snap-through are
investigated, along with small vibrations about equilibrium.

In the analysis, the strip is modeled as an inextensible elastica
with fixed ends. �Elastica arches were treated in Refs. �7,8�.� A
shooting method is utilized to obtain numerical solutions for equi-
librium shapes, and for vibration modes and frequencies. The
critical end rotation is obtained by determining when the lowest
frequency reduces to zero. In conjunction with the analysis, ex-
periments are conducted with polycarbonate strips. Displace-
ments, vibration frequencies, and critical values of the end rota-

tions are recorded. The experimental results are compared with
those from the analytical work, and the correlation is good.

The analytical formulation is presented in Sec. 2, and the ex-
periments are described in Sec. 3. Section 4 contains numerical
and experimental results. A related problem is examined in Sec. 5,
directly related to MEMS, in which a strip with pinned ends is
buckled upward and then a downward electrostatic force causes
snap-through. Concluding remarks are given in Sec. 6.

2 Analytical Formulation and Numerical Solution
Procedure

Consider a thin, flexible, inextensible, unshearable, uniform,
elastic strip with length S0, bending stiffness EI, cross-sectional
area A, mass per unit length �, weight per unit length W, and mass
moment of inertia �I /A. The ends are clamped a distance L apart,
as shown in Fig. 1. The rectangular cross section has width B and
depth D, so that A=BD and I=BD3 /12. The initial height of the
bent strip is H0.

The effect of the weight of the strip on the equilibrium configu-
ration and vibration frequencies was considered in the initial
analysis, and then was neglected after being shown to be negli-
gible for the polycarbonate strips used in the experiments. Damp-
ing was neglected in the analysis, and only in-plane motion was
examined, since the moment of inertia with respect to out-of-plane
displacements is much greater than that for in-plane displace-
ments. Transverse and axial inertia forces are included. Rotary
inertia was also included in the formulation �9�, but then was
found to have a negligible effect for the polycarbonate strips and
was ignored.

From the left end, the arc length is S, the horizontal and vertical
coordinates are X�S ,T� and Y�S ,T�, respectively, and the angle in
radians is ��S ,T�, where T denotes time. The total arc length is S0,
and the angle with the horizontal at S=0 is denoted �. In the
initial circular equilibrium configuration �assuming negligible
self-weight�, the angle is �e�S�, with �e�0�=�0, and the height is
H0. The downward rotation of the ends from the initial configu-
ration is �.

The bending moment M�S ,T� is positive if it is counterclock-
wise on a positive face, the horizontal force P�S ,T� is positive in
compression, and the vertical force Q�S ,T� is positive if down-
ward on a positive face. Dimensional vibration frequencies are
denoted �.
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Based on the geometry, the moment-curvature relationship for
an elastica, and dynamic equilibrium, the governing equations are
�10�

�X/�S = cos �, � Y/�S = sin �

��/�S = M/EI, � M/�S = ��I/A��2�/�T2 + Q cos � − P sin � �1�

�P/�S = − ��2X/�T2, � Q/�S = − ��2Y/�T2 − W

The following nondimensional quantities are defined:

x = X/S0, y = Y/S0, s = S/S0, m = MS0/EI, p = PS0
2/EI

q = QS0
2/EI, t = �T/S0

2��EI/�, � = �S0
2��/EI, l = L/S0 �2�

h0 = H0/S0, w = WS0
3/EI, � = D2/�12S0

2�, � = �0 − �

The governing equations in nondimensional form are then given
by

�x/�s = cos �, � y/�s = sin �

��/�s = m, � m/�s = ��2�/�t2 + q cos � − p sin � �3�

�p/�s = − �2x/�t2, � q/�s = − �2y/�t2 − w

where 0�s�1 and 0�x� l, with l�1.
The subscript e will denote quantities associated with an equi-

librium configuration, and the subscript d will be used for dy-
namic quantities corresponding to small vibrations about equilib-
rium. The variables in Eq. �3� are written in the following form:

x�s,t� = xe�s� + xd�s�sin �t, y�s,t� = ye�s� + yd�s�sin �t

��s,t� = �e�s� + �d�s�sin �t, m�s,t� = me�s� + md�s�sin �t �4�

p�s,t� = pe + pd�s�sin �t, q�s,t� = qe�s� + qd�s�sin �t

From Eqs. �3� and �4�, the governing equations for equilibrium are
found to be

xe� = cos �e, ye� = sin �e

�5�
�e� = me, me� = qe cos �e − pe sin �e

where pe is constant and

qe�s� = w�1/2 − s� �6�

so that qe=0 if the self-weight w is neglected. In that case, the
initial shape is circular, the corresponding bending moment m�s�
and curvature �0��s� are constant, pe=0, and the nondimensional
span and initial height are related to the end angles by

l =
sin �0

�0
, h0 =

1 − cos �0

2�0
�7�

where �0 is in radians.
The governing equations for linear vibrations about the equilib-

rium state are given by

xd� = − �d sin �e, yd� = �d cos �e

�d� = md, md� = − ��2�d + �qd − pe�d�cos �e − �pd + qe�d�sin �e �8�

pd� = �2xd, qd� = �2yd

If �0	142.5 deg, corresponding to l=0.1224, the two sides of
the strip touch each other when a certain end rotation is attained.
Similar self-contact at a point has been described in Refs. �6,10�
and references cited therein.

Numerical solutions are obtained using a shooting method with
the subroutines NDSOLVE and FINDROOT in MATHEMATICA �11�. For
the case of equal end rotations and symmetric equilibrium shapes,
the left half of the strip is considered. The end rotation � and
nondimensional half-span l /2 are specified, and qe is given by Eq.
�6�. The values of pe and me�0� are varied until the solution of Eq.
�5� satisfies xe�0.5�= l /2 and �e�0.5�=0 with sufficient accuracy.

For symmetric equilibrium configurations involving self-
contact at a point, the left half of the strip is considered, and the
portion from the left end to the contact point, whose length is
denoted a, is analyzed. For the upper loop above the contact point,
it is known that qe=0, me�a�=3.027634 / �0.5−a�, pe= �me�a� /
0.96163�2, and me�0.5�=1.71018�pe �12�. As in Ref. �10�, coor-
dinate systems are set up at the contact point, and the shooting
method is applied using geometrical conditions at the left end,
contact point, and midpoint of the strip. The length a is specified,
and the angle at the left end is obtained from the resulting shape.

To compute vibrations using Eq. �8�, a shooting method is again
applied. Resulting parameters from the equilibrium solution are
utilized. The quantity md�1� is given a value, since the amplitude
of the vibration mode is arbitrary, and the quantities pd�0�, qd�0�,
and �2 are varied until the conditions xd�1�=0, yd�1�=0, and
�d�1�=0 are satisfied. Frequencies for the initial bent strip are the
same as for a clamped circular arch, as described in the Appendix.

3 Experiments
A thin polycarbonate strip was used to verify some of the the-

oretical calculations. A number of different thicknesses were
available, but most of the tests were conducted on strips 1.524
mm thick. The width was fixed at 25.4 mm, and the length varied
such that the initial end angle resulted in a circular arc. The spe-
cific weight was 11.2 kN /m3 �although weight was typically ne-
glected in the theoretical analysis� and Young’s modulus was 2.4
GPa.

The experimental apparatus is shown in Fig. 2. Aluminum
blocks clamped the strip at either end, and then each end could be

L

S

X

Y

S0
θ

α

Fig. 1 Schematic of bent strip

Fig. 2 Photo of experimental system
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rotated by a prescribed angle �. The central point deflection �in
the vertical direction� d was then recorded as a function of end
angle.

For each value of �, with �0=30 deg, 60 deg, 90 deg, and 120
deg, the lowest frequencies of small-amplitude vibration were
measured using a laser velocity vibrometer. Small oscillations
were initiated by applying a small perturbation, and the frequency
content was extracted using the B&K PULSE software �Naerum,
Denmark�.

4 Results
The results are described in terms of nondimensional quantities.

The effect of self-weight on the vibration frequencies is consid-
ered first. For the polycarbonate strip with a thickness of 1.524
mm, the weights per unit length w are 0.784, 1.21, and 2.65,
respectively, for initial end angles �0=30 deg, 60 deg, and 90
deg. The lowest vibration frequency was computed for the case of
self-weight with the bent strip in an upward initial position and
also in a downward initial position �initial end angles of 
30 deg,

60 deg, and 
90 deg�, as well as for w=0. Results are presented
in the last three rows of Table 1 for the initial shape ��=0� and for
end rotations �=�0 �so that the ends of the strip are horizontal�.
The effect of self-weight is negligible in Table 1, based on the
parameters for the strips used in the experiments, and it is as-
sumed that w=0 in subsequent results �it is possible that self-
weight would have a greater influence for longer strips�. Table 1
also includes experimental values for the lowest frequency for the
standard strip thickness and for two thinner strips. There is finite
precision in both the accuracy of setting the initial end angle and
measuring the central vertical deflection. In some cases the clarity
of a specific frequency may have been influenced by the proximity
of an out-of-plane mode. No further data will be presented for the
thinner strips.

Next, the effect of rotary inertia is examined. The same cases as
in Table 1 are analyzed. The frequencies in Table 1 do not include
rotary inertia, and when it is added in the equations of motion, the
first four significant digits for the frequencies do not change. Ro-
tary inertia is, therefore, neglected in subsequent results, i.e., �
=0 in Eq. �3�.

Most of the results correspond to initial end angles �0
=30 deg, 60 deg, 90 deg, and 120 deg. For these cases, the values
of the base length l and initial height h0 are listed in Table 2.
Figure 3 shows the theoretical equilibrium paths for these four
cases. The abscissa is the downward equilibrium deflection of the

midpoint of the bent strip from its initial shape, denoted �, i.e.,
�=h0−ye�0.5�. The end rotation � is the ordinate. As the ends are
rotated downward, the central portion of the strip initially moves
upward ���0�. Then, with further end rotation, � becomes posi-
tive.

If the ends are rotated upward, ��0. The upward deflection of
the center of the arch is shown in Fig. 3 for the range −60 deg
���0. The curves for �0=60 deg, 90 deg, and 120 deg are
close to each other for the whole range.

Equilibrium shapes for the case �0=90 deg at rotational incre-
ments of 20 deg are sketched in Fig. 4, along with the theoretical
equilibrium path �solid curve� and experimental data �dots�. The
last shape is close to that for the critical end rotation �cr
=162 deg for snap-through. The analytical and experimental re-
sults are very close to each other. Figure 5 shows the results for
�0=30 deg, 60 deg, and 120 deg. The scales on the axes are not
identical.

The upper end of each curve in Figs. 3–5 corresponds to the
point at which snap-through occurs. The corresponding values of
�cr are listed in Table 2. The results demonstrate that snap-through
is experienced when the magnitude of the angle of the ends below
the horizontal is about 80% of its initial value above the horizon-
tal �i.e., �cr�1.8�0�.

Snap-through is determined by observing when the lowest vi-
bration frequency �1 reduces to zero, and the corresponding vi-
bration mode is the buckling mode. Figure 6 shows how the low-
est frequency changes as � is increased for �0=30 deg, 60 deg,
90 deg, and 120 deg. The corresponding mode is antisymmetric
about the center of the strip �s=0.5�, and hence the instability is of
the bifurcation type. The upper ends of the equilibrium paths in
Fig. 3 and the frequency curves in Fig. 6 have slopes that are
almost zero; a zero slope would imply a limit point. Bifurcation
occurs for all initial end angles �0, even for very small angles.
This is in contrast to results based on the usual shallow-arch
theory, in which no instability occurs if �0 is between zero and
some value �1, a limit point occurs if �0 is in some range �1
��0��2, and snap-through is associated with bifurcation if �0
	�2. The shallow-arch theory assumes that the structure is com-
pressible, whereas here the strip is assumed to be inextensible.

The effect of the end rotation � on the lowest two or three
frequencies is seen in Figs. 7�a�–7�d� for �0=30 deg, 60 deg, 90
deg, and 120 deg, respectively. Results from the analysis are
shown as open circles, and results from the experiments are

Table 1 Effect of strip thickness and self-weight on lowest
frequency

Thickness

�0=30 deg �0=60 deg �0=90 deg

�=0 �=�0 �=0 �=�0 �=0 �=�0

0.508 mm 58.2 45.2 52.4 45.8 43.5 43.1
1.016 mm 57.0 45.0 55.7 43.8 46.6 44.2
1.524 mm 58.0 44.5 52.8 45.3 44.3 42.7
Th. �w=0� 58.93 44.18 51.97 43.34 43.27 40.73
Th. �up� 58.67 43.89 51.80 43.15 43.05 40.51
Th. �down� 59.19 44.48 52.14 43.54 43.49 40.94

Table 2 Base length, height, and critical end rotation

�0 30 deg 60 deg 90 deg 120 deg

l 0.955 0.827 0.637 0.413
h0 0.128 0.239 0.318 0.358
�cr 54.4 deg 108 deg 162 deg 212 deg
�cr /�0 1.82 1.81 1.80 1.77

(deg.)

Fig. 3 End rotation as function of midpoint vertical deflection
for �0=30 deg, 60 deg, 90 deg, and 120 deg
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shown as closed circles. For all �0 values, the theoretical and
experimental frequencies are very close to each other.

The first and third curves emanating from �=0 are associated
with modes having antisymmetric normal displacements, and the
second curve corresponds to a symmetric mode. The first three
mode shapes are depicted in Fig. 8 for the case �0=90 deg and
�=149 deg. The amplitude of each mode is arbitrary, since the
vibration analysis is based on linear equations. The second mode
has no nodes, which is possible for the inextensible strip due to
the changes in curvature in equilibrium �e.g., see Refs. �6,10��.
The dashed curve is the equilibrium configuration for this case,
and the solid curve shows the shape of the strip during vibration.
The first and third modes involve a rocking type of motion,
whereas the second mode is essentially a vertical motion.

For �0=120 deg, the two curves in Fig. 7�d� for antisymmetric
modes exhibit a veering phenomenon �i.e., they approach each
other but do not intersect�, and the curve for symmetric modes
intersects the “third” curve twice. Figure 9 presents a close-up
view of Fig. 7�d� in the approximate range 140 deg��
�200 deg. The veering and the upper crossing point are seen in
this figure for both the theoretical and experimental data.

Frequencies associated with upward end rotations ���0� are
included in Fig. 7. The axial force in the strip tends to become
more tensile as � decreases, yet the second and third frequencies
tend to decrease. In Fig. 7�a� for �0=30 deg, the first two fre-
quency curves intersect when � reaches a certain negative value.

If the bent strip exhibits snap-through and then the ends are
rotated further �i.e., � is increased past �cr�, the post-snap-through
equilibrium states can be determined from Fig. 7 due to symmetry
of the system about the horizontal axis. A frequency for � is also
a frequency for end rotation 2�0−�. Therefore, for �cr��
�2�0, the corresponding frequencies for small positive values of
� based on this relationship are applicable, and for �	2�0, cor-
responding values for ��0 can be used.

For the case �0=150 deg, self-contact occurs when �
=171 deg. The corresponding equilibrium configuration of the
strip is depicted in Fig. 10. If � is increased further, the analysis
predicts that self-contact at a point continues until � reaches 306
deg, at which time the normal internal compressive force between
the two sides at the contact point reduces to zero. The plot of the
midpoint deflection � for the range 0���306 deg is shown in
Fig. 11. In tests for this case of �0=150 deg, however, out-of-
plane displacement and snap-through occur before � reaches 306
deg.

5 Electrostatic Force on MEMS Device
The problem treated in this section is related to the above work

and to the motivation for this study. In Ref. �13�, a beam was
buckled upward by a compressive force, the ends were con-
strained to be stationary, and then a downward electrostatic force
was applied. The slopes of the beam were relatively small, and
shallow-arch theory was utilized in the analysis. Some experi-
ments were also carried out with a microbeam. A similar study
was conducted in Ref. �14� for a shallow, initially curved beam
with clamped ends. These MEMS devices exhibit snap-through
instability that can be utilized as a switch.

Here, a strip is bent upward into a circular shape and the ends
are pinned, i.e., there is no bending moment at the ends, unlike the
work in Secs. 2–4. In dimensional terms, a horizontal electrode is
situated below the bent strip at a distance �gap� G0 below the
pinned supports. A voltage difference V0 is applied, and the mem-
brane deflects downward toward the plate due to the electrostatic
Coulomb force. When the voltage reaches a critical value, snap-
through occurs and the strip jumps into an inverted position. �In
Refs. �13,14�, this is called pull-in instability if the strip contacts
the electrode when it jumps downward.�

Using the standard model �13,14�, the downward force per unit
of horizontal length is �0BV0

2 / �2�G0+Y�2�, where �0 is the dielec-
tric constant of air. Hence, the electrostatic force is inversely pro-
portional to the square of the distance between the electrode and
the strip. With W=0, the last of Eq. �1� is replaced with

�Q/�S = − ��2Y/�T2 −
�0BV0

2 cos �

2�G0 + Y�2 �9�

The nondimensional terms in Eq. �2� are used, along with

g0 =
G0

S0
, f =

6S0�0V0
2

D3E
�10�

Equilibrium is governed by Eq. �5� plus

qe� =
− f cos �e

�g0 + ye�2 �11�

and vibrations are governed by Eq. �8�, except that the last of
those equations is replaced with

φ = 0

φ = 140

φ = 120

φ = 160

φ = 100

φ = 80

φ = 60

φ = 40

φ = 20

φ = −20
(deg.)

δ

Fig. 4 End rotation as function of midpoint vertical deflection for �0=90 deg; dots denote
experimental data
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qd� = �2yd +
2fyd cos �e

�g0 + ye�3 +
f�d sin �e

�g0 + ye�2 �12�

The parameters w and � are zero. At s=0 and 1, me and md are
zero, and the end angles are not specified during loading. The
stable equilibrium states are again symmetric with respect to s
=0.5.

The appropriate nondimensional span l for a circular initial
shape is determined by setting �0, varying p until ��0.5�=0, and
using x�0.5�= l /2 to get l. For �0=15 deg, 30 deg, 45 deg, and 60
deg, respectively, this yields l=0.982926, 0.932432, 0.850656,
and 0.741020. In the examples, which use these initial angles, the
bent strip remains above the x-axis until snap-through occurs, and
then the whole strip suddenly inverts downward.

In the shooting method for equilibrium, f , g0, and l are speci-
fied. The quantities pe, qe�0�, and �e�0� are varied until xe�0.5�
= l /2, �e�0.5�=0, and qe�0.5�=0. For vibration, the quantity �d�0�
is given a value, and pd�0�, qd�0�, and �2 are varied until xd�1�
=0, yd�1�=0, and md�1�=0. The force magnitude f is increased
until the lowest vibration frequency decreases to zero, giving the
critical value fcr for snap-through. Again the buckling mode is
antisymmetric with a single node at the midpoint of the strip, such
as in Fig. 8�a�.

Results for the critical force magnitude fcr are computed for the
range 0.01
g0
0.05. The resulting relationship is almost linear,
with fcr�c0+c1g0 where �c0 ,c1�= �0.003,3� for �0=15 deg,
�0.06,11� for �0=30 deg, �0.26,25� for �0=45 deg, and �0.75,46�
for �0=60 deg. In other words, for the numerical examples in-
vestigated, for a given bent strip, the square of the critical voltage
is approximately a linear function of the vertical gap between the
horizontal electrode and the ends of the strip.

6 Concluding Remarks
In-plane snap-through of a thin elastic strip has been examined.

The ends of the strip are rotated upward such that the strip is
initially circular and is “deep,” and then the ends are rotated
downward symmetrically �with constant horizontal span� until the
central portion of the strip suddenly inverts. The onset of the
snap-through is associated with a bifurcation point.

In the analysis, the strip is modeled as an inextensible elastica,
and two-dimensional equilibrium shapes, vibration frequencies,
and vibration modes are determined numerically using a shooting
method. Initial angles of 30 deg, 60 deg, 90 deg, and 120 deg are
considered in detail, and some results are also obtained for an
initial angle of 150 deg �in which case the two sides of the strip
contact each other above the center of the span as the ends are
rotated�. When the ends of the strip are angled downward, the first
and third vibration modes involve primarily rocking motions,
whereas the second mode is essentially a vertical vibration with
no internal nodes.

6
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Fig. 5 End rotation as function of midpoint vertical deflection
for „a… �0=30 deg, „b… 60 deg, and „c… 120 deg; dots denote
experimental data
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Fig. 6 End rotation as function of lowest frequency for �0
=30 deg, 60 deg, 90 deg, and 120 deg
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The critical value of the end rotation is obtained by observing
when the lowest frequency reduces to zero. Snap-through occurs
when the magnitude of the downward end angle is approximately
80% of the initial upward angle.

Experiments were conducted with polycarbonate strips. Equi-
librium shapes and vibration frequencies were measured. The re-
sults agreed well with the analytical results.

In the standard model for shallow curved beams or arches,
snap-through does not occur if the height of the structure is below
a threshold value �3,4�. In the present problem, it occurs for small
heights as well as large heights. The reason is that the strip con-
sidered here is assumed to be inextensible. The stable equilibrium
states are symmetric, but the strip exhibits an asymmetric shape as
it suddenly moves downward into a fully inverted configuration.

Extensibility could be included in the elastica analysis �15�. On
the right-hand sides of the first, second, and fourth of Eq. �1�, the
following factor would be included: 1− ��P cos �+Q sin �� /
�EA��. In Eq. �3�, the factor would be 1− ��p cos �+q sin �� /
��2�� where � is the slenderness ratio S0 /r with r being the radius
of gyration. For the polycarbonate strips, � is large �e.g., �=726
when �0=30 deg� and the effect of extensibility on the results is
negligible.
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Fig. 7 End rotation as function of lowest frequencies for �0 equal to „a… 30
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Fig. 8 Mode shapes for �0=90 deg and �=149 deg
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Fig. 9 Expansion of the end rotation as function of lowest fre-
quencies for �0=120 deg
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A related problem with applications in MEMS was also treated
analytically. The ends of the strip were pinned and were com-
pressed until the strip buckled upward. Then a downward electro-
static force was applied by a horizontal electrode below the strip.
Initial end angles of 15 deg, 30 deg, 45 deg, and 60 deg were
considered, and the critical value of the force was found to be
almost a linear function of the vertical distance between the elec-
trode and the supports of the strip.
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Appendix
For the initially circular, inextensible, bent strip �neglecting

self-weight and rotary inertia�, the internal forces pe and qe are
zero, and the constant bending moment is me�s�=−2�0. The vi-
bration frequencies are the same as those for the corresponding
circular, inextensible arch with clamped ends, even though the
arch is unstrained and hence has no bending moment. The arch
frequencies can be obtained in the following manner �16�. The
equation

n6 − 2n4 + �1 − ��n2 − � = 0 �A1�

is solved for the roots n1
2, n2

2, and n3
2 using the analytical solution

for a cubic equation. Then the equation

n1�n2
2 − n3

2�tan�n1�0� + n2�n3
2 − n1

2�tan�n2�0� + n3�n1
2 − n2

2�tan�n3�0�

= 0 �A2�

is solved numerically for � �e.g., using FINDROOT in MATH-

EMATICA�. The value of � used here is related to � by �=4�0
2��.

For �0=30 deg, 60 deg, 90 deg, 120 deg, and 150 deg, respec-
tively, Eqs. �A1� and �A2�, as well as the elastica analysis of this
paper, yield the lowest frequency to be 58.9327, 51.9693,
43.2726, 34.7846, and 27.5826.
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The Energy Absorption
Characteristics of Square Mild
Steel Tubes With Multiple
Induced Circular Hole
Discontinuities—Part I:
Experiments
This two-part article reports the results of experimental and numerical works conducted
on the energy absorption characteristics of thin-walled square tubes with multiple circu-
lar hole discontinuities. Part I presents the experimental tests in which dynamic and
quasistatic axial crushings are performed. The mild steel tubes are 350 mm in length, 50
mm wide, and 1.5 mm thick. Circular hole discontinuities, 17 mm in diameter, are later-
ally drilled on two or all four opposing walls of the tube to form opposing hole pairs. The
total number of holes varies from 2 to 10. The results indicate that the introduction of
holes decreases the initial peak force but an increase in the number of holes beyond 2
holes per side does not further significantly decrease the initial peak force. The findings
show that strategic positioning of holes triggers progressive collapse hence improving
energy absorption. The results also indicate that the presence of holes may at times
disrupt the formation of lobes thus compromising the energy absorption capacity of the
tube. In Part II, the finite element package ABAQUS/EXPLICIT version 6.4–6 is used to
model the dynamic axial crushing of the tubes and to investigate the action of the holes
during dynamic loading at an impact velocity of 8 m/s. �DOI: 10.1115/1.3114971�

Keywords: square tubes, imperfections, multiple hole cut-outs, energy absorption

1 Introduction
High impact events such as transport-related accidents can re-

sult in life-changing injuries or loss of life to vehicle occupants.
Attempts to minimize this damage primarily require the absorp-
tion of the kinetic energy of the crash in an effort to attain what is
termed good vehicle crashworthiness �1–3�. Improving vehicle
crashworthiness is of specific importance in the light of an ever-
increasing number of vehicles on the road and the subsequent
increase in vehicular accident deaths. According to the 2004
World Health Organization report �4�, on average, 3000 people are
killed daily in road accidents. Such statistical figures have ensured
that the subject of vehicle crashworthiness continues to draw the
attention of academic and industrial researchers worldwide
�5–11�.

In order to achieve good vehicle crashworthiness the common
agreement among researchers �1,2,5–15� is to have an energy ab-
sorption device that achieves one or both of the following: de-
crease the initial peak force and/or absorb as much energy as
possible. In fulfilling these criteria the device will enable a reduc-
tion in the acceleration perceived by vehicle occupants and the
amount of energy transferred from the vehicle to its occupants in
a crash. Crush force efficiency �CFE� and stroke energy �SE�,
given in Eqs. �1� and �2�, are typical parameters used to assess the
performance of these energy absorbing devices in achieving these
criteria.

CFE =
Pm

Pi
�1�

SE =
�

L
�2�

The ideal value for CFE is unity �5�. The CFE parameter is useful
in determining the extent to which a constant deceleration is
achieved, thus a value of unity would indicate that the device has
reduced the initial peak force �Pi�, also referred to as ultimate
peak force, sufficiently to enable a smooth deceleration during
impact. The ideal value that would indicate maximum energy ab-
sorption for SE is 100%. Due to the compaction of the tubes
however, this is not physically possible. Abramowicz and Jones
�6� found that the maximum attainable value of SE for square
tubes is 73%.

Various studies �2,3,5–11� have been conducted on the axial
compression of thin-walled tubes and have enabled the character-
ization of the manner in which they fail, namely, Euler and pro-
gressive bucklings. Euler buckling is characterized by a small
deformation after loading begins followed by a very large global
bending such that the tube can no longer sustain further axial
loading �5,7�. Progressive buckling is associated with an initial
peak force followed by a lower periodic force with relatively con-
stant amplitude for the remainder of the load application event
�5,7�. Progressive buckling proceeds through the development of
folds or lobes resulting in extensive plastic strain. This strain is
the mechanism through which progressive buckling absorbs sig-
nificantly more energy than Euler buckling �2,5,8�. Furthermore,
the incidence of either Euler or progressive mode is governed by
the tube geometry of the tube. Abramowicz and Jones �9� found
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that the length to width ratio �L /C� at which progressive collapse
transitioned to Euler increased with an increase in the width to
thickness ratio �C / t�.

This ability to effectively dissipate energy makes thin-walled
tubes an ideal manner of improving vehicle crashworthiness
�1,2,5–9�. Consequently they are widely used in the construction
of the mainframes of cars �2,3�. These thin-walled tubes are joined
together to form a hollow frame commonly known as the space-
frame. Various studies �1–3,5–18� have investigated the manner
through which thin-walled tubes dissipate energy and the optimi-
zation of that energy absorption. This allows thin-walled tubes to
be applied in a manner that fully exploits their energy absorbing
capabilities �5�.

One of the ways to improve energy absorption is to insert im-
perfections, also known as triggers or initiators or discontinuities,
into the tube wall. These discontinuities can be geometrical in
form such as dents and through-hole circular, elliptical, or slotted
cut-outs or material changes. Chung Kim Yuen and Nurick �11�
provided an extensive review of the application of induced geo-
metric and material modifications to the improvement of energy
absorption in thin-walled structures. It was noted that these efforts
to improve energy absorption must ensure that tubes are able to
deform in a predictable manner when their energy absorbing
qualities are required. More particularly, these induced imperfec-
tions can decrease the initial peak force and control the particular
mode of buckling induced in the tube. Studies �5,7,13,14� inves-
tigating the effect of a single discontinuity pair inserted at mid-
height have concluded that the introduction of discontinuities into
the tube wall does decrease the initial peak force. Furthermore,
these discontinuities “trigger” the collapse of the tube. This is as
discussed by Abramowicz �2� who stressed the need for the rel-
evant absorber to be “triggered” in such a way that the formation
of natural folds is promoted. The formation of natural folds en-
courages progressive buckling and energy absorption is maxi-
mized.

The prevailing conclusion among Refs. �5,7,13,14� is that for
circular discontinuities an increase in hole diameter results in an
increase in the reduction in the initial peak force. There is how-
ever a limit beyond which increasing the discontinuity severity
will have an adverse effect on energy absorption. For example,
Arnold and Altenhof �7� and Marshall and Nurick �13� found that
a discontinuity of hole diameter larger than 32 mm in 50 mm wide
square tubes caused splitting.

Gupta and Gupta �14� investigated the effect of multiple circu-
lar holes on the energy absorption characteristics of circular tubes.
The specimens used contained two or four opposing circular hole
discontinuities laterally drilled on one, two, or three planes spaced
symmetrically along the length of the tube. The results indicate
that the introduction of more than two opposing holes did not
decrease the initial peak force significantly further than that
achieved by just two opposing holes. Furthermore, Gupta and
Gupta �14� reported that buckling was triggered at the location of
the holes in one of the planes and the collapse mode varied de-
pending on the number of planes.

Montanini et al. �10� noted that both the size and the position-
ing of the trigger need to be taken into account for effective crush
initiation. Lee et al. �15� furthermore found that if induced discon-
tinuities were not located at the natural hinges of lobes then they
would cause irrevocable disturbances to the collapse mode that
developed and lead to global bending even if the geometry of the
tube was such that it would have otherwise buckled in progressive
mode. Consequently, a strategic placement of holes in the zones
where the lobe hinges are expected to fall when the tube under-
goes progressive buckling is required. Montanini et al. �10� sug-
gested the application of theoretical findings to calculate the po-
sitioning of the triggers. Abramowicz and Jones �6,16� proposed
analytical predictions for the wavelength of a single lobe in the
progressive buckling of square tubes, in that the original �before
lobe formation� height of the lobe is given as

l/t = 0.99�C/t�2/3 �3�
The work described in this paper extends the knowledge described
above by investigating the effect of multiple circular discontinui-
ties as crush initiators in the collapse mode progression. Since the
aim is that the discontinuities act as points of crush initiation at
which lobes are induced, the spacing of successive hole pairs
relative to one another is considered carefully. Furthermore, the
effect of placing holes on both or all four tube walls is also re-
ported. For the quasistatic tests the manner by which collapse is
triggered and progresses during axial loading is closely examined.
The nature of the dynamic tests precludes similar observations
and consequently a validated numerical model is presented in Part
II �17� to observe the role of the discontinuities in triggering col-
lapse during dynamic axial loading.

2 Experimental Program

2.1 Test Specimens. Mild steel industrial seam weld tubes
with nominal width �C� 50 mm, thickness �t� 1.5 mm, and length
�L� 350 mm are used. These dimensions give geometrical ratios of
L /C and C / t corresponding to progressive buckling �L /C�10 for
5.5�C / t�38� as described by Abromowicz and Jones �6,16�.
Using Eq. �3�, the wavelength �2l� for the tubes in this paper
should be 32 mm. However, on the measurement of the actual
lobe wavelength of as-received tube �plain with no discontinui-
ties� of the above dimensions, the theoretical prediction appears to
underestimate the actual lobe wavelength, which is approximately
50 mm. The objective is to place discontinuities at regular inter-
vals of 50 mm in order to attempt to trigger lobe formation where
the lobe would naturally form in the absence of holes. Opposing
hole pairs of diameter 17 mm are laterally drilled midwidth of the
walls of the tube. The specimen configurations are illustrated in
Fig. 1. Specimen group A has holes on two tube walls and speci-
men groups B_H50 and B_HEq have holes on all four tube walls.
In group A, illustrated in Fig. 1�a�, the hole are spaced 50 mm
apart where there are multiple holes per sides. In group B_H50,
illustrated in Fig. 1�b�, the holes are also 50 mm apart on each
tube wall and adjacent hole pairs are placed on alternating walls.
Group B_HEq, illustrated in Fig. 1�c�, contains hole pairs spaced
symmetrically along the length of the tube with adjacent hole
pairs being on alternating tube walls. A number is appended after
the letters “A” or “B” in each group name to indicate the number
of holes present in the particular specimen.

2.2 Quasistatic Axial Crush Testing. Quasistatic axial crush-
ing is performed in a Zwick hydraulic load cell with a maximum
capacity of 200 kN. The bottom 50 mm of the tube is fixed by a
clamp during testing. All tubes are crushed at a cross head speed
of 30 mm/min �strain rate 1.7�10−3 s−1� for a distance of 220
mm to correspond to the maximum tube compaction of 73% �6�.
Data acquisition software, connected to the load cell and a com-
puter, records the force-displacement history of the crushing
event. The energy absorbed �Ea

s� and mean crushing force �Pm�
are calculated using Eqs. �4� and �5�. Equation �4� applies the
trapezium rule for integrating the area under the force-
displacement graph and represents the energy absorbed during the
entire quasistatic axial crushing event.

Ea
s = �

j=2

N

0.5�Pi + Pi−1���i − �i−1� �4�

Pm =
Ea

s

�
�5�

2.3 Dynamic Axial Crush Testing. The dynamic crush tests
are performed in a drop hammer rig. The specimen is clamped for
a length of 50 mm at its base and placed on the anvil of the rig.
The mass is raised to the desired height and released to impact the
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tube in an axial direction. The energy absorbed �Ea
d� during the

dynamic loading event is calculated using Eq. �6�, assuming no
losses to friction, in which the crushed distance ��� is measured
for each specimen.

Ea
d = Mg�h + �� �6�

Replacing energy absorbed in the quasistatic tests �Ea
s� in Eq. �5�

with Ea
d yields the mean force for the dynamic tests. The drop

hammer rig used is not equipped with data acquisition equipment
and hence force-displacement histories are not recorded. A finite
element model is validated and used to analyze the force-
displacement histories of the dynamic tests and is reported in Ref.
�17�.

3 Experimental Results and Observations

3.1 Quasistatic Tests. Table 1 presents the results of the qua-
sistatic axial crush tests. The letter “S” is prefixed to the specimen
name to indicate the quasistatic test and a number is suffixed to
distinguish between different specimens of the same configura-
tion. Furthermore, specimens without holes are referred to as

“plain_tube” and where the diameter of discontinuities present in
the specimen differs from the standard 17 mm, the diameter is
included in the specimen name preceded by the letter “d.” Two
failure modes are observed in the quasistatic tests, namely, pro-
gressive collapse �PS� and mixed mode �MM�, and are illustrated
in Fig. 2. Mixed mode refers to a collapse mode that is a combi-
nation of progressive collapse and Euler buckling. The test is
stopped if MM collapse mode develops.

3.1.1 Specimen Group A

3.1.1.1 Configuration A2. As expected, the introduction of an
opposing hole discontinuity pair at midheight causes a reduction
in initial peak force. The initial peak force for specimen SA2_1 is
10% lower than that for the specimens without holes �splain-
_tube_1 and splain_tube_2�. Furthermore a specimen of diameter
17 mm �SA2_1� results in a lower initial peak force than one of
diameter 12.5 mm �SA2_d12.5_1�. This result is concurrent with
literature �5,14� in which the understanding is that the larger the
hole diameter, the lower the initial peak force. This reduction in
force is due to the localization of deformation at the hole discon-
tinuity. The discontinuities act as stress raisers within the area in

Fig. 1 Test specimen configurations
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which they are placed allowing the area to fail at a comparatively
lower applied force than it would in the absence of discontinuities
�5�. Photographs taken during the crushing event are given in Fig.
3�a� for specimen SA2_d12.5_1. The letters below each photo-
graph correspond to those in Fig. 3�b�, which illustrates the cor-
responding force-displacement curve together with that of a plain
tube �splain_tube_2�. Specimen SA2_1 displays similar crushing
behavior to SA2_d12.5_1 but with a larger reduction in initial
peak force. The crushing event for specimen SA2_1 is illustrated
in Fig. 4.

Although specimen SA2_1 collapsed in the PS mode, a skew
initial lobe is observed in point �b� of Fig. 4. This is characterized
by an upturning of the outer hinge of the lobe such that it contacts
the tube wall above it and interferes with the subsequent lobe
formation adjacent to it. This is visible at points �c�, �d�, and �e� of
Fig. 4. The incidence of a skew lobe for the initial lobe appears to
be a random occurrence since it is observed for some initial lobes
but not all.

3.1.1.2 Configuration A4 and A6. Increasing the number of
holes from two to six holes affords a slight decrease in the initial

peak force. The average initial peak force for the specimens of
four and six holes is 89.34 kN. Increasing the number of holes
does however produce a change in the collapse mode from pro-
gressive collapse in specimens of configuration A2 to mixed mode
in A4 and A6 specimens. The crushing event for SA4_1 is illus-
trated in Fig. 5. It is illustrated that one pair of opposing holes in
SA4_1 act as crush initiators. After the initial lobe is formed, a
similar incidence of skew lobe formation as observed in specimen
SA2_1 �Fig. 4� is observed at point �c� of Fig. 5. This skew lobe
results in a destabilization of the subsequent lobes forming above
it and the collapse mode of the tube is compromised as illustrated
by points �d�–�f� in Fig. 5. The centerline of the tube shifts side-
ways resulting in an offset in the axis through which the load is
being applied as seen at points �e� and �f� at which point the tube
can no longer sustain further axial loading. This collapse mode is
defined as MM since progressive collapse is first observed fol-
lowed by the global bending of the tube. MM collapse is also
observed in specimens SA4_2 and SA6_2. Specimens SA4_1 and
SA4_2 are illustrated in Fig. 6.

3.1.2 Specimen Group B_H50 and B_HEq

3.1.2.1 Group B_H50. The average initial peak force for all
group B_H50 specimens is 81 kN. This represents a 20% reduc-
tion in the initial peak force of a plain tube. Furthermore, in Table
1 it is observed that there is a slight decrease in initial peak force
as the number of holes is increased from four to ten. The crushing
event for specimen SB6_H50_1 is illustrated in Fig. 7. The pro-
gressive collapse in specimens of group B_H50 is triggered by
two pairs of opposing holes simultaneously. The arrows at point
�b� of Fig. 7 indicate the triggers that concurrently initiate the first
lobe. Subsequent collapse continues progressively first below and
then above the initial lobe. Most specimens in group B_H50 are
subject to a skew initial lobe but the lobes forming subsequently
are able to straighten the initial lobe and progressive collapse
continues undisturbed, except in specimen SB10_1 whose crush-
ing event is illustrated in Fig. 8.

To illustrate the lobe initiation role that hole discontinuities play
in the progressive collapse of tubes, the crushing process for
specimen SB10_H50_1, which failed in MM collapse, is given by
the photographs in Fig. 8. As noted for group B_H50 specimens,
two sets of opposing holes simultaneously trigger the initiation of
the first lobe visible at point �b� of Fig. 8. The skew lobe forma-
tion that occurs in specimen SB10_H50_1 is more severe than that
observed in the other group B_H50 specimens. The initial lobe
rotates to contact the tube wall as indicated at point �d� of Fig. 8.
The hole discontinuity marked with an arrow displaces the action

Table 1 Results for quasistatic axial crushing of square tubes with and without hole
discontinuities

Specimen name
Pi

�kN�
Pm

�kN�
Ea

�kJ� CFE
SE
�%� Failure mode

splain_tube_1 101.7 32.0 7.0 0.32 73.3 PS
splain_tube_2 101.6 31.4 6.9 0.31 73.3 PS
SA2_d12.5_1 94.8 32.7 7.1 0.34 73.3 PS
SA2_1 91.3 33.4 7.3 0.37 73.3 PS
SA4_1 86.9 31.9 3.4 0.37 35.5 MM
SA4_2 90.2 34.6 3.7 0.38 35.8 MM
SA6_1 89.4 33.4 7.3 0.37 73.3 PS
SA6_2 91.0 35.1 3.8 0.39 35.6 MM
SB4_H50_1 84.0 32.2 7.0 0.38 73.33 PS
SB6_H50_1 81.6 33.3 7.3 0.41 73.33 PS
SB8_H50_1 80.5 32.1 7.0 0.4 73.33 PS
SB10_H50_1 79.6 33.6 3.5 0.42 34.6 MM
SB10_H50_2 79.9 32.6 7.2 0.41 73.3 PS
SB4_HEq_1 86.6 29.9 6.6 0.35 73.3 PS
SB6_HEq_1 89.3 31.62 7.0 0.35 73.3 PS
SB8_HEq_1 86.9 34.02 7.5 0.39 73.3 PS

Fig. 2 Photographs of quasistatically crushed tubes, which
collapsed in „a… MM and „b… PS modes
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of the skew lobe and enforces the initiation of another lobe, which
subsequently prevents the specimen from bending further to the
right as illustrated by points �d�–�f�. It appears that the impaction
of the skew lobe on the tube wall is severe enough to cause the
tube to bend in the opposite direction as shown in point �g� result-
ing in MM collapse, even after the hole discontinuity straightens
the tube in point �e�. Figures 7 and 8 illustrate that the hole dis-
continuities fall at the hinges of the lobes for group B_H50.

3.1.2.2 Group B_HEq. The initial peak force for all group
B_HEq specimens averages 88 kN, a 13% reduction from that of
a plain tube, with no significant change with increasing number of
holes. All specimens collapsed in the PS mode. In specimen
SB4_HEq_1, crushing commences at the top pair of opposing
holes, progressing in a steady manner above the initial lobe.

Crushing continues below the initial lobe down the length of the
tube in a steady manner as for a tube without hole discontinuities.
The same crush behavior was observed for specimen
SB6_d17_HEq_1. Some hole discontinuities fall at the lobe
hinges and some do not for both specimens. Photographs of the
final crushed specimens are given in Fig. 9 for specimens
SB4_HEq_1 and SB6_HEq_1. The force-displacement curve and
the crushing process for specimen SB8_HEq_1 is given in Figs.
10 and 11, respectively. The buckling of specimen SB8_HEq_1
initiates at one of the hole discontinuity pairs as shown by point
�b� of Fig. 11. Progressive buckling occurs in an upwards direc-
tion. Once crushing finishes above the initial lobe, another lobe is
triggered at a hole discontinuity located further down the tube.
This leads to the formation of a relatively large lobe as shown in

Fig. 3 „a… Photographs of the quasistatic crushing of specimen SA2_d12.5_1; „b… force-displacement
curve for the quasistatic crushing of specimens SA2_d12.5_1 and splain_tube-2

Fig. 4 Photographs of the transient quasistatic crushing of specimen
SA2_1
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points �g�–�i�. The positioning of the hole pairs at different dis-
tances relative to one another thus imposes a certain lobe wave-
length on the tube.

3.2 Dynamic Tests. The results of all specimens tested dy-
namically are presented in Table 2. The letter “D” is prefixed to
the specimen name to indicate the dynamic test and, as before, a
number is suffixed to distinguish between different specimens. All
specimens failed in PS mode except the three marked with an
asterisk � �� in Table 2, which failed in MM. Velocity is calculated
by Eq. �7�, which assumes zero friction losses and applies conser-
vation of energy.

V = �2g�h + �� �7�

3.2.1 Specimen group A

3.2.1.1 Configuration A4. The specimens of configuration A4
tested at different heights are shown in Fig. 12. Expectedly, an
increase in height and hence impact velocity results in an increase
in stroke efficiency, which is visible by the increase in crushed
distance in Fig. 12. The collapse mode appears to develop in a

Fig. 5 Photographs of the transient quasistatic crushing of
specimen SA4_1

Fig. 6 Photographs of specimens SA4_1 and SA4–2 at the end
of quasistatic crushing

Fig. 7 Photographs of the transient quasistatic crushing of specimen
SB6_H50_1

Fig. 8 Photographs of the transient quasistatic crushing of specimen
SB10_H50_1

Fig. 9 Photographs of specimens „a… SB4_HEq_1 and „b…
SB6_HEq_1 at the end of quasistatic crushing
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steadier manner with increasing height as illustrated by the lack of
visible disturbances in the formation of lobes for specimen
DA4_3 in photograph �c� of Fig. 12 as opposed to the other two
specimens �photographs �a� and �b��.

3.2.1.2 A6. Specimens DA6_1, DA6_2, and DA6_3 are illus-
trated in Fig. 13. The mean force is slightly higher for specimens
with six holes �Fig. 13� than for those with four holes �Fig. 12�,
while those with four holes have a slightly better stroke efficiency
resulting in an overall equivalent amount of energy absorption.
For a height of 3.3 m, specimen DA4_1 has a stroke efficiency of
64.4%, while DA6_1 has a stroke efficiency of 61.6%; the energy
absorbed is 11.2 kJ and 11.1 kJ, respectively.

3.2.2 Specimen Group B_H50 and B_HEq

3.2.2.1 Group B_H50. All group B_H50 specimens tested dy-
namically buckled in the PS mode. Specimens tested at heights of
2.5 m and 3.3 m, respectively, are given in Fig. 14. The figure
illustrates that specimens of group B_H50 are characterized by a

steady and repeatable mode of collapse. Figure 14 also illustrates
that there is a random cluster of lobes formed at either the impact
end, nonimpact end, or the middle of the tube. No significant
changes in mean force, stroke efficiency, or energy absorption are
notable for an increase in the number of holes within the speci-
mens tested at the same height. The average values for mean
force, stroke efficiency, and energy absorbed for specimens tested
at 4m are 57.4 kN, 79.8%, and 13.7 kJ, respectively. These values
are similar to those for the plain tube, d_plain_tube_2, tested at
the same height; a mean force of 57.5 kN, a stroke efficiency of
79.6%, and an energy absorption of 13.7 kJ. This indicates that the
addition of holes has no quantitative effect on the energy absorp-
tion parameters of a plain tube. The absence of collapse in Euler
bending or MM in this group indicates that the addition of holes in
the specified configuration ensures the development of progres-
sive collapse. A definite occurrence of progressive collapse is a
desirable feature in energy absorbing devices in which progressive
collapse is required to provide the necessary energy absorbing
attributes. Figure 15 further illustrates the repeatability achieved
by specimen group B_H50 where configuration B6_H50 speci-
mens both tested at 3.3 m produce similar collapse profiles.

3.2.2.2 Group B_HEq. Specimen group B_HEq is character-
ized by the formation of lobes of different sizes within the same
specimen. Though the overall collapse mode remains progressive,
the change in the lobe size compromises the overall stability of
the collapse mode in some specimens. Figures 16–18 illustrate
photographs of the specimens of group B_HEq after dynamic
axial crushing at the indicated heights.

The irregular lobes formed in group B_HEq specimens are im-
posed by the distances between successive discontinuities and
have wavelengths larger than that would develop in a plain tube.
The result is an uneven distribution of lobes such that these ir-
regular lobes destabilize the collapse causing the tube to tilt to one
side as viewed in photograph �b� of Figs. 16 and 17, respectively.
The collapse mode is compromised because these irregular lobes
result in the tube leaning over precariously as if about to collapse
in mixed mode. It is noted earlier for the quasistatic tests that
specimen configuration B6_HEq is characterized by regular sized
lobes similar to those present in a plain tube. For the dynamic
tests, the same observation is made for specimen DB6_HEq_3,

Fig. 10 Force-displacement curve for the quasistatic crushing of specimen SB8_HEq_1

Fig. 11 Photographs of the transient quasistatic crushing of
specimen SB8_HEq_1
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illustrated in Fig. 19. The mean force, energy absorbed and stroke
efficiency for specimen DB6_HEq_3 are 57.5 kN, 13.7 kJ, and
79.5%, respectively. These values are similar to those of d_plain-
_tube_2 also tested at 3.3 m, which are 57.5 kN, 13.7 kJ, and
79.6%, respectively.

4 Discussion of Experimental Findings

4.1 Initial Peak Force. The reduction in initial peak force
relative to a plain tube is illustrated in Fig. 20 for each specimen
configuration. Figure 20 illustrates that group B_H50 results in the
highest reduction in initial peak force. The reduction in initial
peak force for group B_HEq is generally similar to that of group

A. This implies that not only is having holes on all four sides of
the tube better for initial peak force reduction but also fixing hole
spacing appropriately as group B_H50 is better than the sym-
metrical spacing of group B_HEq. This confirms that having the
discontinuities at the estimated tube wavelength improves crash-
worthiness as suggested by Montanini et al. �10� and Lee et al.
�15�.

4.2 Collapse Mode. Group B_H50 has the most stable col-
lapse mode, which was not prone to mixed mode collapse. Speci-
men group A is the most unstable. Of the 11 group A specimens
tested dynamically and quasistatically, 5 collapsed in mixed mode,

Table 2 Test results for square tubes subjected to dynamic axial loading

Specimen name
h

�m�
V

�m/s�
�

�mm�
Ea

�kJ�
Pm

�kN�
SE
�%�

d_plain_tube_1 3.3 8.0 210.0 11.2 53.5 70.0
d_plain_tube_2 4.0 8.9 238.7 13.7 57.5 79.6
DA2_1 3.3 8.0 172.0 11.1 64.6 57.3
DA2_2 3.3 8.0 176.1 11.1 63.1 58.7
DA2_3 3.3 8.0 209.3 11.2 53.7 69.8
DA4_1 3.3 8.0 193.3 11.2 57.9 64.4
DA4_2� 3.3 8.0 - - - -
DA4_3 4.0 8.9 241.8 13.8 56.9 80.6
DA4_4 2.5 7.0 155.8 8.6 55.2 52.0
DA6_1 3.3 8.0 184.6 11.1 60.3 61.6
DA6_2 4.0 8.9 235.5 13.7 58.3 78.5
DA6_3� 2.5 7.0 - - - -
DB4_H50_1 3.3 8.0 193.6 11.2 57.6 64.6
DB4_H50_2 3.3 8.0 199.4 11.2 56.2 66.5
DB4_H50_3 4.0 8.9 240.8 13.8 57.1 80.3
DB4_50_4 2.5 7.0 154.5 8.6 55.6 51.5
DB6_H50_1 3.3 8.0 190.5 11.2 58.5 63.5
DB6_H50_2 3.3 8.0 200.1 11.2 56.1 66.7
DB6_H50_3 4.0 8.9 237.4 13.7 57.8 79.1
DB6_H50_4 2.5 7.0 167.5 8.6 51.5 55.8
DB8_H50_1 3.3 8.0 201.4 11.2 55.6 67.1
DB8_H50_2 4.0 8.9 239.8 13.7 57.3 79.9
DB8_H50_3 2.5 7.0 167.2 8.7 51.7 55.7
DB10_H50_1 3.3 8.0 192.1 11.2 58.2 64.0
DB10_H50_2 4.0 8.9 239.1 13.7 57.4 79.7
DB10_H50_3 2.5 7.0 158.6 8.6 54.4 52.9
DB4_Heq_1 3.3 8.0 184.7 11.2 60.4 61.6
DB4_Heq_2 2.5 7.0 180.6 8.7 48.0 60.2
DB4_Heq_3� 4.0 8.9 - - - -
DB6_Heq_1 3.3 8.0 179.5 11.1 62.1 59.8
DB6_Heq_2 2.5 7.0 181.9 8.7 47.7 60.6
DB6_Heq_3 4.0 8.9 238.4 13.7 57.5 79.5
DB8_Heq_1 3.3 8.0 216.0 11.3 52.1 72.0
DB8_Heq_2 2.5 7.0 177.9 8.7 48.7 59.3
DB8_Heq_3 3.3 8.0 203.4 11.2 55.2 67.8

Fig. 12 Photographs of specimens „a… DA4_4, „b… DA4–1, and
„c… DA4_3 after loading at heights of 2.5 m, 3.3 m, and 4 m,
respectively

Fig. 13 Photographs of specimens „a… DA6_3, „b… DA6_1, and
„c… DA6_2 after load at heights of 2.5 m, 3.3 m, and 4 m,
respectively

041012-8 / Vol. 76, JULY 2009 Transactions of the ASME

Downloaded 04 May 2010 to 171.66.16.44. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



3 of which were tested dynamically. Both groups B_H50 and
B_HEq exhibit mostly progressive collapse mode but the lobes
were of significantly different shapes. Group B_H50 produces
lobes of regular sizes much like those of a plain tube. In group
B_HEq however, the lobes induced are of a nonuniform size.

4.3 Crush Force Efficiency. The crush force efficiency for
groups B_H50 and B_HEq is illustrated in Fig. 21. Within each
specimen group, CFE fluctuates about some average for an in-
crease in the number of holes. The average CFE for group A,
B_H50, and B_HEq is 0.38, 0.40, and 0.36, respectively. The

Fig. 14 Photographs of specimens of group B-H50 after load-
ing at heights of „a… 2.5 m and „b… 3.3 m

Fig. 15 Photographs of specimens of configuration B6_H50
after loading at a height of 3.3 m

Fig. 16 Photographs of specimens of configuration B4_HEq
after loading at heights of „a… 2.5 m and „b… 3.3 m

Fig. 17 Photographs of specimens of configuration B6_HEq
after loading at heights of „a… 2.5 m, „b… 3.3 m, and „c… 4 m

Fig. 18 Photographs of specimens of configuration B8_HEq
after loading at a height of 3.3 m

Fig. 19 Photograph of specimen DB6_HEq_3 after loading at a
height of 4 m
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average CFE for group B_H50 is 27% higher than that of the plain
tubes, which averages 0.31 for plain tubes tested quasistatically.

4.4 Stroke Efficiency. The stroke efficiencies for all speci-
mens of group A, group B_H50 and B_HEq crushed dynamically
at height of 3.3m averaged 65%. This is less than the stroke effi-
ciency of a plain tube crushed at the same height which is 70%.
This better stroke efficiency does not necessarily imply that the

introduction of holes is futile since it has been shown that groups
with holes �B_H50� improve other energy absorption parameters
�CFE�.

5 Conclusions
Dynamic and quasistatic axial crush tests are performed on

mild steel tubes of various hole configurations. The presence of

Fig. 20 Reduction in initial peak force for specimens of groups A, B_ HEq, and B_H50 crushed quasistatically

Fig. 21 Crush force efficiency for groups B_H50 and B_HEq for specimens crushed quasistatically
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holes decreases the initial peak force at all times; this is however
not improved by an increase in the number of holes. Specimen
group B_H50 significantly improves the crush force efficiency of
a plain tube. The mode of crush initiation that develops in group
B_H50 is associated with lower initial peak forces. The location
of holes at points corresponding to the natural hinges of lobes, as
seen in group B_H50, appears to greatly improve energy absorp-
tion by ensuring that progressive collapse mode is repeatedly trig-
gered. This repeatability is important for energy absorption de-
vices as it means that this group can be expected to crush in the
preferred progressive mode at most times. Specimen group A dis-
plays both progressive and mixed mode collapse in specimens of
the same hole configuration. This means that hole discontinuities
may have a negative effect on the energy absorption characteris-
tics if unfavorably positioned. Group A specimens, however, show
improved performance under dynamic loading.
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Nomenclature
C � width of side of square tube
d � hole diameter

Ea
d � energy absorbed �dynamic�

Ea
s � energy absorbed �quasistatic�

H � initial height of mass
l � half the wavelength of a single lobe

L � initial length of tube
m � mass
Pi � initial peak force

Pm � mean crushing force
t � wall thickness

V � impact velocity
� � crushed distance �stroke�
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The Energy Absorption
Characteristics of Square Mild
Steel Tubes With Multiple
Induced Circular Hole
Discontinuities—Part II:
Numerical Simulations
This paper is Part II of a two-part article and presents the results of numerical simula-
tions conducted to investigate the energy absorption characteristics of square tubes sub-
jected to dynamic axial loading. Part I reports the experimental results of both quasi-
static and dynamic tests. The validated model is used to study the crushing
characteristics of tubes with multiple induced circular hole discontinuities using the finite
element package ABAQUS/EXPLICIT version 6.4-6. Holes of diameter 17 mm are used as
crush initiators, which are laterally drilled into the tube wall to form opposing hole pairs.
Holes of diameters 12.5 mm and 25 mm are also used to assess the effects of hole
diameter on energy absorption. Two hole spacing configurations are investigated, one in
which the hole pairs are placed at regular intervals of 50 mm along the tube wall and
another in which the hole pairs are spaced symmetrically along the tube length. Holes
are also drilled on either two or all four opposing tube walls. The number of holes is
varied from 2 to 10. The results indicate that the introduction of the holes decreases the
initial peak force. However, an increase in the number of holes, beyond two holes, does
not further significantly decrease the initial peak force. A study of the crushing history of
the tubes reveals that crushing is initiated at the location of the holes. The results also
indicate that the type of hole spacing determines how crushing is initiated at the hole
locations. The model satisfactorily predicts the resultant collapse shapes but overpredicts
the crushed distance. �DOI: 10.1115/1.3114967�

Keywords: square tubes, imperfections, multiple circular cut-outs, energy absorption

1 Introduction
Part I �1� in this two-part paper reports on the experimental

investigation aimed to determine the effect of inserting multiple
circular hole discontinuities on the energy absorption characteris-
tics of axially loaded square tubes. Data from the quasistatic tests
provided complete force-displacement history of the crushing
event. The nature of the quasistatic test also allows observation of
the collapse history during the entire crushing event and hence the
effects of the holes on the initiation and development of the lobe
formation. The rapidity of the dynamic test, however, precludes
the same level of analysis by removing the ability to visually
observe the crushing process without the use of expensive equip-
ment, such as high speed camera. With the unavailability of the
relevant equipment, the force-displacement history of the dynamic
loading is not recorded. These constraints limit the understanding
to be garnered from the dynamic test; in particular, the action of
the discontinuities in inducing crushing cannot be monitored and
reported on. In a discussion about the design of energy absorbing
devices, Abramowicz �2� stressed the need for the relevant ab-
sorber to be “triggered” in such a way that the formation of natu-
ral folds is promoted. This allows the peak force to be reduced in

such a way that any instability is arrested in the region of the
discontinuity. The use of finite element analysis �FEA�, once vali-
dated, can provide better insight into the initiation and progression
of crushing in tubes loaded dynamically and enables parameters
inaccessible experimentally to be investigated �3�.

Simulation by the finite element method is generally accepted
as a good indication of material and structural behavior under
various loading conditions �2�. Chung Kim Yuen and Nurick �3�
provided an overview of the use of imperfections to improve en-
ergy absorption in thin-walled tubes and discussed the various
researchers �2,4–8�, who successfully used commercial finite ele-
ment packages to model the response of thin-walled structures
under axial loading. Popular finite element packages noted in the
review �3� are LS-DYNA, used by Tarigopula et al. �8�, Langseth et
al. �7�, and Ostubishin �5�; ABAQUS, used by Lee et al. �6�; and
PAM-CRASH, also used by Lee et al. �6�. Common among the
abovementioned researchers is the use of four-noded shell ele-
ments to model the tubular sections and, in particular, to charac-
terize the initial peak force, lobe wavelength, collapse mode, and
energy absorption in general.

When more than one discontinuity is inserted into the tube wall,
the location of the discontinuities becomes important. Montanini
et al. �7� used DYNA3D to assess the effect of various shapes of
triggers on the collapse mode and energy absorption characteris-
tics of thin-walled square tubes. It was suggested that the use of
theoretical predictions to calculate the length of the lobe wave-
length may aid in obtaining appropriate positioning for triggers
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�7�. Lee et al. �6� investigated the effect of multiple triggers on the
energy absorption characteristics of square tubes. Both ABAQUS

and PAM-CRASH were used to pre-estimate the folding sites
�hinges� at which the triggers should be inserted. It was shown
that the insertion of triggers at the simulation predicted sites im-
proved energy absorption �6�. Conversely, it was found that if
induced discontinuities were not located at the lobe hinges, then
they would cause irrevocable disturbances to the collapse mode
and lead to global bending even if the geometry of the tube was
such that it would have otherwise buckled in progressive mode
�6�.

In Part I �1�, the actual lobe wavelength of a plain tube �no
discontinuities�, which is 350 mm in length �L�, 50 mm in width
�C�, and 1.5 mm in thickness �t�, is measured and found to be
approximately 50 mm. Examining the crushing history as viewed
through the simulation generated images allows the role of the
hole discontinuities in the initiation and progression of collapse to
be studied closely for the dynamic tests as for quasistatic tests.
Furthermore, FEA allows many more tests to be “conducted” than
is physically or economically possible experimentally �2�. The
numerical package used for the simulation is ABAQUS/EXPLICIT

version 6.4-6. The simulation models a drop test of mass of 330
kg and an impact velocity of 8 m/s for various hole discontinuity
configurations.

2 Finite Element Analysis Formulation
In order to minimize processing time, a quarter model with two

symmetry planes is used to model the tube, mass, and clamp as-
sembly. The tube geometry is modeled as a deformable shell ex-
trusion of thickness 1.6 mm and depth 350 mm using a structured
mesh of S4R elements. The shell elements allow the assumption
that the tube experiences no through-thickness stresses. The clamp
and the mass are modeled as rigid bodies. No stresses or strains
are monitored for the clamp and the mass thus allowing them to
be meshed with as few elements as possible while simultaneously
preserving their geometric shape. Two interaction properties are
defined for the model assembly. The first one assigns frictionless
tangential behavior and hard-contact normal behavior, which al-
lows separation after contact and is applied to define the contact
between the clamp and the tube. This property is also applied to
the tube, mass, and clamp in their interaction with themselves and
thus also defines the contact behavior between successive lobes in
the tube. The second interaction property assigns a tangential co-
efficient of friction of 0.3 and is applied to define the contact
between the mass and the tube. This value of the coefficient of
friction was used successfully by Tarigopula et al. �8� to prevent

lateral motion between the tube and the mass. The assembly of the
model is illustrated in Fig. 1, in which loading occurs in the posi-
tive direction of the indicated z-axis.

The mass is assigned an initial velocity of 8 m/s, which, in the
experimental tests, corresponds to a drop height of 3.3 m under
the assumption of zero friction losses. The following boundary
conditions are further defined; the mass is constrained in all rota-
tional and translational degrees of freedom except for translation
parallel to the z-axis under the action of gravity, and all transla-
tional and rotational degrees of freedom are constrained for the
clamp. Two symmetry planes, parallel to the z-axis, are created on
the tube to give the quarter model across which reflection enables
the entire tube geometry to be discerned. Translational motion in
the z-axis direction is constrained for the bottom-most edge of the
tube. The interaction property defined for the clamp enables the
boundary conditions applied to the clamp to also constrain the
motion of the clamped end of the tube in all directions except
translation along the z-axis.

Tensile tests conducted on the tube material give a yield stress
��y� of 328 MPa. These data are converted into true stress ��t�
and logarithmic plastic ��t� strain and is assigned to the tube.
Strain rate effects are incorporated using the Cowper–Symonds
relationship �9� with constants D=844 s−1 and q=2.204, obtained
for common South African mild steel by Marais et al. �10�. Tem-
perature effects are also incorporated using Young’s modulus �E�
and yield stress ��y� dependence on temperature as proposed by
Masui et al. �11�. Other general material properties assigned to the
tube are density ��� 7850 kg /m3, Young’s modulus �E� of 210
GPa, inelastic heat fraction of 0.9, Poisson’s ratio of 0.3, and
specific heat of 450 kJ /kg K. The initial temperature is set to 293
K.

3 Validation of Finite Element Analysis
The finite element model generally overestimates the crushed

distances for dynamic tests. The model can also not be used to
validate the crush forces due to the unavailability of the relevant
instrumentation in the drop test rig. Nevertheless, the finite ele-
ment results show good correlation for crush initiation and final
crushed shape and are therefore used as a comparative study.

3.1 Crush Initiation Validation. Observations made in the
crush initiation for the quasistatic tests are compared with the
FEA results. This comparison is made on the assumption that
quasistatic tests and dynamic tests performed at velocities under
10 m/s should, according to Jones �9�, yield similar collapse char-
acteristics. A comparison of the quasistatic crush initiation for

Fig. 1 Finite element analysis model assembly for configuration B6_H50
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configurations B8_H50 and B6_HEq against the simulation re-
sults is given in Figs. 2 and 3. For B8_H50, it is clear in both
experimental and FEA images, Fig. 2�a� and 2�b�, respectively,
that crush initiation occurs by the same mechanism in which two
hole pairs act together to initiate the first lobe. The hole pairs that
initiate crushing are indicated by the solid arrows. The remaining
two hole pairs fall on the hinges of lobes forming subsequent to
the initial lobe and are indicated by the dashed arrows in Figs.
2�a� and 2�b�. For B6_HEq, the initiation of crushing occurs at a
single hole pair for both simulation and experimental results, as
illustrated by the solid arrows in Fig. 3�a� and 3�b�, respectively.
Subsequent crushing occurs progressively from the initial lobe
even though other hole pairs are available at remote locations
away from the initial lobe. That is, the tube crushes as if the hole
discontinuities were absent but it is observed that these other hole
pairs fall on the hinges of the lobes, as illustrated by the dashed
arrows in Fig. 3.

3.2 Crushed Shape Validation. All the simulation models
crush in the progressive mode. This was not the case for the ex-
periments in which some specimens collapse in the mixed mode
�MM� where progressive buckling commences but is disturbed
and global bending results. It is, however, observed in the experi-
ments �1� that the occurrence of mixed mode appears to be ran-
dom, occurring in some specimens of the same configuration.
Also holes fall on the inner hinges of lobes for all simulations
while in the experimental results holes fall on either the inner or
outer hinge for specimens of the same configuration.

3.2.1 Group A. The presence of a hole pair appears to de-
crease the size of a lobe compared with those adjacent to it. This
observation was also made by Marshall and Nurick �12� and is
noted presently. The final crushed profile for A4_d17 is illustrated
in Fig. 4 for both experimental and simulation tests. The arrows in
Fig. 4 indicate lobes of decreased size compared with their adja-

cent counterparts. The numbered arrows illustrate that the simula-
tion predicts the same number of lobes as the experimental tests.

3.2.2 Group B_HEq. A comparison of the experimental and
FEA final profiles for configurations B4_HEq, B6_HEq, and
B8_HEq are given in Figs. 5–7. It is noted that the simulation
results overestimate the crushed distance of the experimental re-
sults and this is evident in Figs. 5–7. The evolution of the lobes
and their shape is still closely predicted by the simulation, how-
ever. Perceptibly large lobes, indicated by the arrows in Fig. 5, are
induced by the prevailing hole spacing in the tubes. Figure 6
illustrates that the final shape B6_HEq is accurately predicted by
the model and is characterized by five uniform lobes. The collapse
shape of B8_HEq is characterized by curling of some, as illus-
trated by the solid arrows in Figs. 7�a� and 7�b�. Figure 7 also
shows, for both simulation and experimental results, an uncrushed
length at the impact end �indicated by the braces� and the forma-
tion of a large lobe, which is indicated by the dashed arrows. The
experimental specimens of group B_HEq in general are prone to

Fig. 2 Comparison of „a… experimental and „b… simulation
crush initiations for configuration B8_H50 Fig. 3 Comparison of „a… experimental and „b… simulation

crush initiations for configuration B6_HEq

Fig. 4 Comparison of „a… experimental and „b… simulation
crush modes for configuration A4_d17
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instability and tend to lean to one side. These comparisons show
that the simulation predicts the collapse shape of the specimens
well.

4 Analysis Results and Observations

4.1 Group A

4.1.1 A2. The crush behavior for specimens of two opposing
holes at midheight is similar for the different hole diameters, and
the force-displacement curves are given with that of the as-
received �plain—no initiators� tube in Fig. 8. A marked reduction
in initial peak force is evident between the tubes with holes and
the plain tube. The extent to which the initial peak force �Pi� is
reduced depends on the size of the discontinuity such that a hole
diameter of 12.5 mm �A2_d12.5� produces the smallest reduction
in Pi and a diameter of 25 mm �A2_d25� produces the largest
reduction. The circled region indicates a high peak force at the
end of crushing, which is caused by the compaction of the tube.

Figure 9 illustrates the initial stages of collapse for �a� a plain
tube and �b� A2_d17. The progressive buckling for the plain tube
commences at the impact end, as shown in Fig. 9�a�. Progressive
buckling proceeds in a steady manner all the way down the tube.
Small deflections near the clamped end of the tube are observed in
Fig. 9�a�. Langseth and Hopperstad �13� observed similar hardly
discernable buckles distributed over the entire length of quasistati-
cally and dynamically loaded aluminum square tubes before the
onset of localized buckling. The last lobe formed in what is
termed extensional mode, which is characterized by a seamless
fold running all the way around the tube. Langseth and Hopper-
stad �13� also observed extensional mode on the peripheral lobes
in square tubes, which were expected to buckle in symmetric
mode tested in the vicinity of 8 m/s. In Fig. 9�b�, deflections of the
tube wall are observed alongside the hole discontinuity pair in
A2_d17. The hole discontinuity pair gradually takes on an ellip-
tical shape as the deflections progress. The deflections continue to
expand outward and eventually result in the formation of a lobe
and the flattening of the hole. Progressive buckling proceeds from
the first lobe on either the top or the bottom half. Once that half is
completely crushed, buckling continues on the other half, pro-
gressing from the location of the first lobe. The mean force for
specimens of two opposing holes remains relatively constant for
an increase in diameter and the average of the three specimens of
diameters 12.5 mm, 17 mm, and 25mm is 42.44 kN and that of a
plain tube is 46.40 kN. This slight decrease in mean force may be

Fig. 5 Comparison of experimental „a… and simulation „b…
crush modes for configuration B4_HEq

Fig. 6 Comparison of „a… experimental and „b… simulation
crush modes for configuration B6_HEq

Fig. 7 Comparison of experimental and simulation crush
modes for configuration B8_HEq

Fig. 8 Force-displacement curves for A2_d12.5, A2_d17, A2_d25, and a plain tube
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attributed mainly to the decrease in initial peak force effected by
the presence of the hole discontinuities.

Though configuration A2 specimens failed in the same progres-
sive mode as the plain tube, some changes in the deformation
shape are observed. The insertion of increasing hole diameters in
the plain tube results in a reduction in the size of the first lobe but
with no change in the collapse mode. Figure 10 illustrates this
observation for the specimen of hole diameter 25 mm. The lobes
of the plain tube are approximately the same size. The reduction
in the size of the first lobe is most prominent for specimen
A2_d25 and is less apparent for specimens A2_d12.5 and A2_d17,
which have comparatively smaller hole diameters.

4.1.2 A4, A6, and A8. The effects of increasing the number of
holes are similar across specimens of varying diameters; conse-
quently, only the specimens with hole diameter 25 mm are taken
up for further discussion. Figure 11 presents the force-
displacement curves for group A specimens of diameter 25. The
mean force for A4, A6, and A8 remains relatively constant across
specimens with the same hole diameter. For example, the mean
forces for specimens A4_d25, A6_d25, and A8_d25 are 42.80 kN,
43.15 kN, and 43.68 kN, respectively; the average of which is
43.20 kN. This average is similar to the average mean force for
specimens of configuration A2 �A2_d12.5, A2_17, and A2_d25�,
which is 42.44 kN. This implies that the introduction of further
hole discontinuities after the initial pair affords no further change
in mean force.

The lobe formation processes of specimens A4_d25 and
A8_d25 are alike, particularly at the initial stages of buckling.
This can be attributed to the geometric similarity of these speci-
mens at the location of the first lobe, which results in the same
manner of crush initiation. The initial stages of crushing are illus-
trated in Fig. 12 for A4_d25 and A8_d25 and in Fig. 13 for
A6_d25. Hardly discernable lobes are visible on the tube walls
alongside the hole discontinuities, as noted for specimens of con-
figuration A2. On continued crushing, however, buckling does not
localize at any single hole discontinuity pair but rather between
two hole pairs, as illustrated in Figs. 12�a� and 12�b�, respectively.
This is in contrast to specimens of A2 in which the first lobe forms
by an outward deflection of the tube walls directly adjacent to the
hole as a result of the hole assuming an elliptical shape and falling
into the lobe. On continued crushing, subsequent lobes form such
that the hole discontinuities are at the hinges of the lobes. In
A6_d25, Fig. 13, the first lobe is induced at one of the hole pairs
located at midheight. The first lobe forms in a skew manner char-

Fig. 9 Initiation of buckling for a „a… plain tube and „b… A2_d17

Fig. 10 Difference in size of first lobe between a plain tube and
specimen A2_d25

Fig. 11 Force-displacement curves for group A and a plain tube
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acterized by a bending of the lobe in the downward direction.
Further loading results in progressive buckling first above the ini-
tial lobe and then below it.

4.2 Group B_H50 and B_HEq. Group B contains all speci-
mens with hole discontinuities on all four tube walls. Group B is
further subdivided into groups B_H50 and B_HEq. In both
groups, there is a slight decrease in initial peak force with an
increase in number of holes. As expected, this decrease increases
with an increase in hole diameter. The crush modes observed for
groups B_H50 and B_HEq are similar for specimens of different
diameters and thus only the behavior of the specimens with holes
of diameter 17 mm are discussed in detail.

4.2.1 B_H50. The collapse behaviors of all specimens of
group B_H50 are very similar in that the initial force is greatly
reduced by the action of more than two or three hole pairs in
inducing crushing. The force-displacement curves for B4_H50,
B6_H50, B8_H50, and B10_H50 are given Fig. 14 together with
that of a plain tube. The circled region indicates compaction of the
tube. The crushing process for B8_H50 is described in Fig. 2 and
is similar to that of B4_H40. In both specimens, two hole pairs
simultaneously induce the initial lobe. The crushing process for
B6_H50, which crushed in the same manner as B10_H50, is il-
lustrated in Fig. 15. Figure 15�c� illustrates that two or three hole
pairs simultaneously trigger the initiation of the first lobe such that
the hole pairs lie in the hinges of the initial lobe. Further loading
produces progressive buckling first above and then below the ini-
tial lobe.

Fig. 12 Initial transient response for „a… A4_d25 and „b…
A8_d25

Fig. 13 Initial transient response for specimen A6_d25

Fig. 14 Force-displacement curves for group B_H50 and a plain tube

Fig. 15 Transient response for B6_H50
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4.2.2 B_HEq. This group is characterized by progressive col-
lapse with the formation of nonuniformly sized lobes. The sizes of
the lobes forming are dependent on the spacing between succes-
sive hole pairs. Each specimen displays a unique progressive
crushed shape and is discussed separately below.

4.2.2.1 B4_HEq. The force-displacement curve and the tran-
sient response for B4_HEq are provided in Figs. 16 and 17, re-
spectively. Figure 17�c� illustrates that for specimen B4_HEq
crushing initiates at one of the two hole discontinuity pairs. Sub-
sequent crushing occurs above the initial lobe without being in-
fluenced by the other hole discontinuities. The next lobe is not
formed at the second hole discontinuity pair but rather between
the initial lobe and the second hole. The second hole discontinuity
pair does, however, fall into the hinge of the lobe formed above
the initial lobe. Crushing then resumes below the initial lobe. The
hole spacing between successive hole discontinuity pairs is 100
mm; this results in the formation of lobes larger than those en-
countered in a plain tube.

4.2.2.2 B6_d17_HEq. The hole spacing for successive hole
pairs along the tube length is 75 mm for specimen B6_HEq. The
force-displacement curve of specimen B6_HEq is similar to that

of a plain tube in that the force-amplitude and length of successive
periods is similar. This is due to the uniformly sized lobes that
develop in the specimen. Some areas of decreased force amplitude
are, however, present and correspond to the formation of lobes
whose hinges contain hole discontinuities. Figure 18 shows speci-
men B6_HEq after crushing. As can be observed in Fig. 18, the
lobes in specimen B6_HEq are of a uniform size. The actual
crushing process for the specimen initiates at the bottom-most
hole and continues in the same way as in specimen B4_HEq in
which subsequent progressive crushing continues above the initial
lobe. The 75 mm spacing between successive holes allows one
lobe to form over a 50 mm length and the subsequent one is split
between two 25 mm lengths �recall that the wavelength of single
lobe is 50 mm�. This allows the hole discontinuities to fall on the
inner hinges of lobes even though crushing does not initiate re-
motely at those holes.

4.2.2.3 B8_Heq. The force-displacement curve and transient
response for B8_HEq are illustrated in Figs. 19 and 20, respec-
tively. The initial lobe in specimen B8_HEq forms at a single hole
discontinuity pair, as shown in Fig. 20�c�. The second lobe forms
remotely at the top pair of holes. This is different from the other

Fig. 16 Force-displacement curve for B4_HEq

Fig. 17 Transient response for specimen B4_HEq
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specimens, such as B6_HEq, in which lobes forming subsequent
to the initial lobe develop in the space between successive hole
pairs as opposed to remotely at another pair. Further crushing
results in the formation of a very large lobe, as shown in Fig.
20�h�.

5 Discussion of Findings

5.1 Initial Peak Force. Since the intention is to improve the
energy absorption of a plain tube, it is useful to assess the extent
to which the initial peak force is reduced when hole discontinui-
ties are introduced. There is a slight decrease in initial peak force
when the number of holes is increased from 4 to 8 in groups A,
B_H50, and B_HEq. The percent reduction in initial peak force is
illustrated in Fig. 21 for specimens of diameter 17 mm. For a
given number of holes, group B_H50 yields the largest reduction

in initial peak force. The difference in initial peak force between
specimens of group A and those of group B_HEq is almost neg-
ligible for the same hole diameter. This is attributed to the mode
of initiation prevalent in groups A and B_HEq, in which crush
initiation occurs at one of the hole discontinuity pairs. This is in
contrast to group B_H50 in which two hole discontinuity pairs

Fig. 18 B6_HEq after crushing

Fig. 19 Force-displacement curve for specimen B8_HEq as obtained by FE Analysis

Fig. 20 Transient response for B8_HEq
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simultaneously induce the initial lobe. This dual action results in
the lower initial peak forces encountered in group B_H50. The
extent to which the initial peak force can be reduced via the in-
troduction of holes is, however, finite. In other words, there is a
point beyond which increasing the number of holes will have a
negligible effect on the initial peak force. It is expected that an
increase in the number of holes for specimens of hole diameter 25
mm will result in lower initial peak forces than the same increase
in number of holes for specimens of diameter 12.5 mm or 17 mm.
This trend is due to the ability of the hole discontinuity diameter
�d� to scale the initial peak force �Pi� by reducing Pi with an
increase in d.

5.2 Collapse Mode. All specimens collapsed in the progres-
sive mode. This is expected since the geometry of the tubes is

such that Euler buckling is not expected. A major difference in the
collapse profile encountered in the different groups is that the
fixed spacing groups �groups A and B_H50� produced lobes of
uniform size very much like those found on a plain tube, while
group B_HEq produced irregular-sized lobes. This implies that the
hole discontinuities fall on the hinges of the lobes formed thus
inducing a specific lobe wavelength that is different from the
tube’s natural wavelength.

5.3 CFE. The crush force efficiency �CFE� parameter indi-
cates the extent to which the initial peak force is reduced and the
mean force preserved in order to maximize energy absorption. The
values of CFE are given in Fig. 22 for the different groups for
specimens of diameter 17 mm. The difference in crush force effi-
ciency between the different groups is negligible. What is evident,

Fig. 21 Reduction in the initial peak force of a plain tube for specimens of diameter 17 mm

Fig. 22 Crush force efficiency for specimens of diameter 17 mm
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however, is a slight increase in CFE with an increase in number of
holes. This is expected given the decrease in initial peak force
noted for an increase in number of holes. The mean force re-
mained relatively constant at an average of 42 kN for specimens
of diameter 17 mm. This is a slight reduction in the mean force of
a plain tube, which is 46 kN. This reduction may simply be due to
the reduction in initial peak force effected by the introduction of
hole discontinuities.

5.4 SE. Stroke efficiency �SE� is synonymous with the
amount of energy absorbed given that an increase in stroke auto-
matically indicates an increase in energy absorption. The stroke
efficiency did not change significantly between the different
groups or with an increase in number of holes. The average stroke
efficiency of specimens of groups A, B_HEq, and B_H50 for a
diameter of 17 mm is 82% while that for a plain tube is 76%.

6 Conclusions
Dynamic and quasistatic axial crush tests are performed on

mild steel tubes of various hole configurations. The test rig used
for the experimental dynamic tests is unable to provide data con-
cerning the crushing dynamics of the tubes. Finite element analy-
sis is hence performed to model the dynamic tests. The finite
element results show that the insertion of hole discontinuities de-
creases the initial peak force. Group B_H50, in which two hole
discontinuity pairs are close enough to simultaneously induce the
initial lobe, produced the largest reduction in initial peak force
from that of a plain tube. This indicates that the mode of crush
initiation has a large effect on the initial peak force experienced.
The crush force efficiency, stroke efficiency, and amount of en-
ergy absorbed remained relatively unchanged for an increase in
the number of holes and across different groups. The lobes formed
in group B_HEq specimens are irregular and dependent on the
prevailing hole spacing in the specimen. The finite element simu-
lation satisfactorily predicts the final collapse shape of the tubes
but overestimates the crushed distances.

Nomenclature
C � width of side of a square tube
D � Cowper–Symonds coefficient, 844 s−1

Ea � energy absorbed
h � initial height of mass
l � half the wavelength of a single lobe

L � initial length of tube
m � mass

q � strain-rate hardening exponent, 2.207
Pi � initial peak force

Pm � mean crushing force
t � wall thickness

V � impact velocity
� � crushed distance �stroke�
�t � true plastic strain
�t � true stress
�y � yield stress
� � Poisson’s ratio
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The Effect of Fiber Diameter
Distribution on the Elasticity of a
Fiber Mass
A random mass of loose fibers interacting by fiber-fiber contact is considered. As pro-
posed in a previous paper, the elastic response is modeled based on the statistical me-
chanics of bending and torsion of fiber segments between fiber-fiber contact points.
Presently we show how the statistical approach can be used to account for a distribution
of fiber diameters rather than just a single diameter. The resulting expression has the
same form and the same set of parameters as its single-diameter counterpart, except for
two dimensionless reduction factors, which depend on the fiber diameter distribution only
and reduce to unity for monodisperse fibers. Uniaxial compressibility experiments are
performed on several materials with different bimodal fiber diameter distributions and
are compared to model predictions. Even though no additional parameters were intro-
duced to model the effect of mixed fiber diameters, the behavior is accurately predicted.
Notably, the effect of the nonuniform fiber diameter is strong: A mixture of two fiber
diameters differing by a factor of 2 can reduce the response by an order of magnitude,
compared to the case of uniform diameter. �DOI: 10.1115/1.2966178�

Introduction
Fiber masses occur in a variety of technologies. A mechanically

demanding application is press fabrics, which are used in the press
dewatering section of paper machines. The top layer of a press
fabric consists of a carded web of nylon fibers, whose task is to
resist the high pressure in the press nip while retaining a sufficient
porosity to let the water escape at a high velocity.

The effort to theoretically estimate the compressibility of loose
fiber masses was pioneered by van Wyk �1�, who derived a simple
power-law relation between applied pressure and fiber volume
fraction. In his derivations he made several simplifications, e.g.,
fiber bending is the only deformation mechanism, the fibers are
randomly orientated throughout the deformation, and all fibers
have the same size, altogether leading to an overstiff model. After
the work of van Wyk there have been many attempts to improve
the accuracy of the micromechanical approach; Corte and Kallmes
�2�, Komori and Makishima �3�, Pan �4�, and Komori and Itoh
�5,6� mainly focused on deriving a more compliant model com-
pared to van Wyk’s by incorporating orientational effects, curved
fiber segments, and steric hindrance. More recently, Beil and Rob-
erts �7,8� have performed detailed fiber-level simulations of
uniaxial compression. In a previous paper �9� we developed a
constitutive theory allowing for more general deformation paths,
by letting contacts form and break continually. The theory was
based on the independent rotation of approximately straight fiber
segments and the neglect of slip at contacts. The latter restricts the
theory to predominantly compressive deformations. Because the
theory allows for multiple deformation mechanisms, such as fiber
torsion and fiber bending, it captures a wider range of fiber vol-
ume fractions compared to previous models.

All the above theories have, however, been limited to uniform
fiber diameter distributions, i.e., all fibers were assumed to have
the same diameter �4,5,9–15�. Yet modern press fabrics are often
constructed with a tailored mixture of fiber diameters to achieve
maximum control of compressibility and fluid permeability.

The present work generalizes our previous theory �9� to incor-
porate the effects of a nonuniform fiber diameter. To this end we
will need to reconsider the analysis of the contact compliances,
the structure tensors, and the geometrical properties with regard to
the fiber diameter distribution. This is done without introducing
any new adjustable parameters. Finally, we propose a quantifica-
tion of the influence of mixed fiber diameters on the compress-
ibility of the fiber mass in terms of diameter distribution reduction
factors. The theoretical outcome of these reduction factors is com-
pared to compressive experiments performed on several fiber
masses with different fiber diameter distributions.

Constitutive Theory
In Ref. �9� we derived a constitutive relationship for the stress

response to mainly compressive deformations. The most impor-
tant and fundamental steps of the derivation will be recapitulated
here. We start from the macroscopic Cauchy stress

� =
1

V
sym � pr �1�

where p is the contact force, r is the position of a contact point,
and the summation is carried out over all contact points on all
particles in a representative volume V. The stress tensor must be
symmetric on account of the angular momentum balance. Each
contact gives rise to two contact points, one on each particle, with
the associated contact force and normal �p ,n� and �−p ,−n�, re-
spectively. The contact vector r is referred to a local origin at the
centroid of a fiber segment whose length corresponds to the fiber
crimp spacing 2b, as shown in Fig. 1.

If we consider a contact between two particles defined by the
basis vectors, as illustrated in Fig. 2, it is understood that the
dynamics of the contact will depend on the geometric configura-
tion of several other contacts. Since it is practically impossible to
know the complete configuration we have to describe the contact
by a limited number of contact variables. In our previous article
�9�, we used the axis orientations e, e� and the position vectors r,
r� of the two contacting fibers, respectively, as contact variables.
Hence the contact force p is considered as a stochastic function of
those variables. Next, we rewrote Eq. �1� as �=N sym�p̄r�c,
where p̄ is the conditional expectation of p given the contact
variables �e ,e� ,r ,r��, N is the number of contacts per unit volume
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�defined such that each contact point is counted twice, once for
each particle involved�, and the angle brackets �·�c denote an av-
erage among all contacts. Then time differentiation of the stress
yields

�̇ + ��:L�� = N sym��p̄r�c · Lt + �p̄̇r�c� �2�

where L= ��V�t is the macroscopic velocity gradient and V is the
macroscopic velocity field. To construct a model of a fiber mass
we assumed the expectation of the convected force rate to be

p̄̇ = �ṗnn + ṗee + ṗ��� + L · p̄ �3�

where ṗn= ṙn / �sn�c, ṗe= ṙe / �se�c, ṗ�= ṙ� / �s��c, and the compliances
are defined as sn=�rn /�pn, se=�re /�pe, and s�=�r� /�p�.

Finally, we obtained the fiber mass model

�
�

= N� �rn
2�c

�sn�c

�nnnn�c +
�re

2�c

�se�c

�eeee�c +
�r�

2�c

�s��c

������c	:L �4�

Here N is the number of contacts per unit volume, �nnnn�c,
�eeee�c, and ������c are structure tensors, sensitive to the change
in orientation of the fiber mass during deformation, and

�
�


 �̇ + ��:L�� − � · Lt − L · � �5�
is known as the Truesdell stress rate. Thus far, no assumptions
about the distribution of fiber diameters have been made. The
previous theory proceeded by deriving the various averages in Eq.

�4� under the assumption that the fiber diameter was constant. In
the following we shall rederive these quantities for a more general
fiber diameter distribution.

Contact Point Distribution and Structure Tensors. In our
previous article �9� we considered a mass of fibers possessing
uniform properties �constant radius and Young’s modulus�. Here
we will generalize to an arbitrary fiber radius distribution. To do
this, we will need to take appropriate averages of the different
parameters in Eq. �4�. The fiber content will be characterized by a
length fraction of fibers L, which is the total fiber length per unit
volume. Furthermore, we consider an orientation distribution
�l�e� and radius distribution �l�a� by length and assume that
these distributions are mutually independent. In analyzing the dis-
tribution of fiber-to-fiber contacts, we make the assumption that
the distribution of contacts between fibers is equivalent to the
distribution of intersections of interpenetrable “phantom” fibers
with the same distribution of orientations and radii. We introduce
a phantom fiber with orientation e and radius a, referred to as a
test fiber. Then a segment of an arbitrary phantom fiber with ori-
entation e�, radius a�, and length �l intersects a given segment of
the test fiber only if its centerline intersects a surface 2�a+a���l.
Equivalently, the center of the phantom fiber segment must lie
within a volume of the size 2�a+a���e�e���l�l�. Thus, the num-
ber of phantom fibers intersecting the test fiber in the orientation-
radius interval de�da�, per unit length of the test fiber, is given by

dnl�e,a,e�,a�� = 2L�a + a���e � e���l�e���l�a��de�da� �6�

Integration over all possible fiber orientations and radii of the
intersecting fibers, and using the assumption that orientations and
radii are uncorrelated, gives the expected number of contacts per
unit length of the test fiber, characterized by e and a as follows:

nl�e,a� = 2L�� �a + a���e � e���l�e���l�a��de�da�

= 2L��a + a���e � e���l

= 2L�a + �a�l���e � e���l �7�

where the average by length is defined as

�·�l =�� �·��l�e��l�a�deda �8�

The average number of contact points per unit volume �defined
such that each contact is counted twice, once for each particle
involved� is given by

N = L�nl�l = 4L2�a�l���e � e���l�l �9�

where the double average by length is defined as

��·�l�l =���� �·��l�e��l�e���l�a��l�a��dede�dada�

�10�
Let us now consider the average of any given quantity �·� taken

over all contacts. This average is derived by summation over all
contacts and division by the total number of contacts as follows:

�·�c =
L

N
��·�nl�l

or by inserting Eqs. �7� and �8� as follows:

�·�c =
2L2

N ���� �·��a + a���e � e��

��l�e��l�e���l�a��l�a��dede�dada� �11�

The average among contacts can be rewritten in terms of averages
by length, by introducing Eqs. �9� and �10� into Eq. �11�, as fol-
lows:

Fig. 1 Segmentation of a fiber, where 2b is the fiber crimp
spacing

Fig. 2 Schematic of a contact point with the fiber diameters
and the local basis vectors indicated. The primes refer to the
contacting fiber.
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�·�c =
���·��a + a���e � e���l�l

2�a�l���e � e���l�l
�12�

In particular, if a function, q�e ,e�� depends on the orientations e
and e� only, then the average among contacts is

�q�e,e���c =
��q�e,e���e � e���l�l

���e � e���l�l
�13�

and, equivalently, for a function p�a ,a��,

�p�a,a���c =
��p�a,a���a + a���l�l

2�a�l
�14�

Since the distributions of a and e are independent, the fourth
moment of the fiber axis vector e is, by combining Eqs. �10� and
�13�,

�eeee�c =
1

f �� eeee�e � e���l�e��l�e��dede� �15�

where

f = ���e � e���l�l =�� �e � e���l�e��l�e��dede� �16�

Similarly the fourth order moment of the contact normal, defined
as n= � �e�e�� / �e�e��, is

�nnnn�c =
1

f �� �e � e��4

�e � e��3
�l�e��l�e��dede� �17�

The structure tensors, Eqs. �15� and �17�, are identical to the
structure tensors found in our previous article �9�. This was ex-
pected since all fiber fractions �defined by a� are assumed to have
the same orientation distribution. The function f relates to the
overall probability of fibers crossing one another; it may be used
as a scalar measure of the degree of alignment: f =0 for parallel
fibers, f =� /4 for 3D random fibers, and f =2 /� for planar ran-
dom fibers.

The orientation distribution will be modeled in the same way as
in our previous article �9� by assuming affine rotation of the fiber
axes as follows:

e =
F · er


er · Ft · F · er

�18�

where er is the orientation of a fiber segment in a reference con-
figuration �for example 3D random orientation� and F=�X /�Xr is
the overall deformation gradient with respect to the reference
configuration.

Compliances. In our previous paper �9�, we found that in
uniaxial compression the �-component in Eq. �4� will be negli-
gible compared to the e-component. Thus, from hereon, the
�-component will be omitted. Another, and seemingly necessary,
assumption is that the parameters s̄n, s̄e, rn, and re are all approxi-
mately independent of n and e �this is certainly true for random,
planar random, and unidirectional orientations�. To estimate the
compliance parameters we identify two sources of contact force:
fiber bending and fiber torsion. The contacts are not allowed to
slip, i.e., frictional dissipation is not included. As the fiber seg-
ments are assumed straight, the position of a contact point relative
to the fiber segment centroid in the normal direction is simply

rn � a �19�

In the axial direction the contact position will be distributed in
some way. Most probably, the contacts along a segment are ran-
domly distributed and thus,

re � xb �20�

where b is half of the crimp spacing and x is a stochastic variable
randomly distributed in the interval 0�x�1. The crimp spacing
in these materials scales approximately with the fiber radius, cf.
Ref. �9�,

b � �a �21�

Notice that due to Eqs. �19�–�21�, the fiber radii a, a� and
the stochastic variables x, x� have now replaced r, r� as contact
variables.

Normal Compliance. The normal compliance is governed by
the bending of the test fiber, which is described as a generic Euler
beam

sn =
�rn

�pn
=

	3

6�kbEa4 �22�

where E is the fiber Young’s modulus, a is the fiber radius, 	 is the
contact spacing �the distance between two consecutive contact
points along the fiber�, and kb is a geometric factor, which is unity
if the fiber beam is loaded at its midsection and fixed at its end-
sections. Because a is a contact variable and kb is a constant, only
	 is allowed to vary, for given values of the contact variables
�e ,e� ,r ,r��, and the average among contacts of the expectation of
the normal compliance �Eq. �22�� is

�sn�c = � 	3

6�kbEa4�
c

�23�

where the expectation of the contact spacing cubed, 	3, needs to
be estimated. Again, using the assumption that the contacts along
a fiber are randomly distributed, the distribution of the contact
spacing 	 is exponential given by

f�	� =
1

	̄
e−	/	̄ �24�

Thus, the expectation of the contact spacing cubed is obtained as

	3 = 	̄−1�
0




	3e−	/	̄d	 = 6	̄3 �25�

Inserting this into Eq. �23� and considering that the expectation of
the contact spacing is the reciprocal of contacts per unit length of

the fibers, 	̄=nl
−1, yields

�sn�c = � 1

�kbEa4nl
3�

c

=
1

8�kbEL3� 1

a4�a + �a�l�3��e � e���l
3�

c

�26�

where we have used Eq. �7� to replace nl. Now, using Eqs. �13�
and �14� to express the above equation in terms of averages by
length yields

�sn�c =
1

16�kbEL3�a�l
� 1

a4�a + �a�l�2�
l

���e � e���l
−3�l �27�

where ���e�e���l
−3�l� f−3 �exact for random, planar random, and

unidirectional orientations�. Using Eqs. �14� and �19�, the average
among contacts of rn

2 is

�rn
2�c =

�a3 + a2�a�l�l

2�a�l
=

�a3�l + �a�l�a2�l

2�a�l
�28�

Finally, using Eqs. �9�, �27�, and �28� to express the first right-
hand side term in Eq. �4� yields

N
�rn

2�c

�sn�c

= 32�kbEL5f4 �a�l�a3�l + �a�l
2�a2�l

�a−4�a + �a�l�−2�l
�29�

In practice it is more direct to calculate the volumetric averages of
a instead of the averages among contacts or units of fiber length.
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Therefore we rewrite the above equation in terms of volumetric
averages, and to do that we need to express the total fiber length
per unit volume in terms of volumetric averages as follows:

L =
1

V�
i

li =
�

VF�
i

vi

�ai2
=

�

�
�a−2�v �30�

where VF is the total fiber volume, li is the length and vi the
volume of a certain fiber fraction i, �=VF /V is the total fiber
volume fraction, and the angle bracket with subscript v denotes
the volumetric average. Now the average of an arbitrary function
of fiber radius q�a� among units of fiber length is transformed into
its volumetric counterpart as follows:

�q�a��l =
1

VL�
i

liq�a� =
�

�a−2�v

1

VF�
i

vi

�ai2
q�a� =

�a−2q�a��v

�a−2�v

�31�

Finally, using Eqs. �30� and �31� to rewrite Eq. �29� yields

N
�rn

2�c

�sn�c

=
256kbEf4�5

�4 �b �32�

where �b is the reduction factor describing the radius dependence

�b =
�a�v�a−1�v�a−2�v

4 + �a−1�v
2�a−2�v

3

8�a−6�a + �a−1�v�a−2�v
−1�−2�v

�33�

When the radius distribution is uniform the reduction factor is
unity.

Axial Compliance. The axial compliance is governed by the
torsion and bending of the contacting fiber

se =
�re

�pe
= se

t + se
b =

16	�

3�ktEa�2 +
	�3

6�kbEa�4 �34�

where the primed quantities refer to the contacting fiber �9� and kt
is unity for a simple torsion bar that is loaded by a couple ap� at
its midsection and fixed at its end-sections. The average of the
bending part of the axial compliance is equal to the averaged
normal compliance, cf. Eqs. �22� and �27�,

�se
b�c =� 	�3

6�kbEa�4�
c


� 	3

6�kbEa4�
c

=
1

16�kbEL3f3�a�l
� 1

a4�a + �a�l�2�
l

�35�

The torsional part of the axial compliance is

�se
t �c = � 16	�

3�ktEa�2�
c


� 16	̄

3�ktEa2�
c

�36�

which is rewritten using 	̄=nl
−1 together with Eq. �7� as follows:

�se
t �c = � 16

3�ktEa2nl
�

c

=
8

3�ktEL
� 1

a2�a + �a�l���e � e���l
�

c

�37�

To express the above equation in terms of averages by length, Eqs.
�13� and �14� are used,

�se
t �c =

4

3�ktEL�a�l
�a−2�l���e � e���l

−1�l �38�

where ���e�e���l
−1�l� f−1. Using Eqs. �20� and �21�, the average

of re
2 among contacts is

�re
2�c � �2�x2�c�a2�c �39�

where �x2�c= 1
3 and thus, by Eqs. �14� and �39�,

�re
2�c �

�2�a3 + a2�a�l�l

6�a�l
= �2 �a3�l + �a�l�a2�l

6�a�l
�40�

Now, using Eqs. �9�, �38�, and �40� to express the torsional part of
the second right-hand side term in Eq. �4� yields

N
�re

2�c

�se
t �c

=
�ktEL3f2

2

�2�a3�l + �a�l�a2�l

�a�l�a−2�l
�41�

and finally by virtue of Eqs. �30� and �31� this can be rewritten in
terms of volumetric averages as follows:

N
�re

2�c

�se
t �c

=
kt�

2

�2 Ef2�3�t �42�

where �t is the reduction factor describing the radius dependence
of the torsional part of the axial stiffness

�t =
�a�v�a−1�v�a−2�v

2 + �a−1�v
2�a−2�v

2�a−4�v
�43�

which of course becomes unity at uniform conditions. The bend-
ing part of the axial stiffness is, except for the factor �2 /3, iden-
tical to the normal stiffness, cf. Eq. �32�,

N
�re

2�c

�se
b�c

=
256kb�2Ef4�5

3�4 �b �44�

where the reduction factor �b is given by Eq. �33�.

Constitutive Equation. Introducing Eqs. �32�, �42�, and �44�
into Eq. �4� and ignoring the �-component yields the result

�
�

= �
256kbE

�4
f4�5�b�nnnn�c

+
E�2

� 1

�2
ktf

2�3�t	−1

+ � 256

3�4
kbf4�5�b	−1

�eeee�c�:L

�45�
Figures 3 and 4 plot the reduction factors versus the fiber radius

ratio, a2 /a1, for a fiber mass consisting of discrete fractions of two
fiber radii, a1 and a2. If the fiber radius ratio is unity then the
reduction factors become unity, and as a2 /a1 increases, the values
of the reduction factors are reduced. Upon further increasing
a2 /a1, one would expect the reduction factors to decrease mono-

Fig. 3 The stiffness reduction versus the fiber radius ratio for
various mixing proportions, according to Eq. „33…
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tonically and level out as a2 /a1→
. The model, however, pre-
dicts a minimum after which the factors increase toward infinity
as a2 /a1→
. This is of course an anomaly and hence the model
will clearly not be applicable to other than moderate radius ratios.

Experiment
The compression measurements were performed using a paral-

lel plate instrument �16� for soft compressible solids, where the
stress is measured by means of a local stress transducer to remove
any free edge effects. The load cell sensitivity is about 0.1 kPa in
compression.

The tested materials were carded webs of fibers of a type used
in the industrial press felt: crimped polyamide-6 fibers. Fibers of
four different diameters, 27 
m, 35 
m, 50 
m, and 67 
m,
were mixed in different proportions. The mixtures were then
carded in a laboratory carding machine �CORMATEX CC/400�
into a uniform web. The web was wound up on a reel and the
resulting fiber mass was cut into appropriate lengths that were
rotated at 90 deg and then carded again. This procedure was re-
peated three times to ensure good mixing. To verify an even dis-
persion of the fibers, differently colored fibers were carded and
then examined by optical microscopy. Sixteen different composi-
tions were prepared, as shown in Table 1. The samples were cut
out of the web by means of a punching machine. Each sample was
weighed and measured in order to determine the surface weight.

To erase the stress history from carding and storage, the samples
were compressed to a stress of P=−100 kPa from which the
samples were allowed to relax to a stress of P=−80 kPa. After
this treatment, the samples were used in the experiments. Com-
pression data were sampled at a constant displacement rate of
50 mm /min, a constant temperature of 21.0°C, and a relative
humidity of 31%.

Results
Figure 5 presents some typical experimental data for the

samples consisting of two fibers �d1=27 
m and d2=50 
m�
mixed in various proportions. The scatter at low compressions is
due to the limited resolution of the load cell. The repeatability and
reproducibility of the measurements were consistent for all
samples. The experimental values of the reduction factors, �b

expt

and �t
expt, were determined by fitting the model to the data; the

resulting curves are shown as solid lines in Fig. 5. The values of
the dimensionless constants �, kb, and kt, and the ratio �0 /�r
were determined for materials of uniform fiber diameter; in Ref.
�9�, kb=2.2 and kt=0.05. The initial condition of the numerical
computation was P=0 at �=�0, defined as the volume fraction
where a nonzero compressive stress was first registered.

As expected, and clearly seen in Fig. 5, the pressure response at
a given volume fraction decreases as the fraction of the finer fibers
increases. At higher volume fractions �e3e3e3e3� vanishes rapidly,
so that the main contribution to the total stress comes from the
first term of Eq. �45� and thus it was straightforward to resolve
�b

expt from the experimental data. Then the experimental magni-
tudes of the torsional reduction factor �t

expt could be determined
from the experimental data at intermediate volume fractions.
Here, the second term of Eq. �45� dominates, and the �t and �b
terms in the denominator are of similar magnitude. The results are
plotted in Figs. 6 and 7, and compared to the theoretical estimates
of �b and �t, Eqs. �33� and �43�. As seen from the plot, the ex-
perimental values are in close agreement with the theoretical
estimates.

Concluding Remarks
In a previous article �9� we derived a constitutive equation for

fiber masses of uniform fiber diameter. To estimate the effect of a
nonuniform fiber diameter distribution we have presently red-
erived the constitutive equation and, apart from allowing a non-
uniform fiber diameter, the fundamental assumptions are identical
to those of the previous model. The resulting constitutive equation
differs from the previous one by the appearance of two reduction
factors, which depend on the diameter distribution only. In the

Fig. 4 The stiffness reduction versus the fiber radius ratio for
various mixing proportions, according to Eq. „43…

Table 1 Materials

a1 a2 a1 /a2 �1
a

27 67 2.48 0.25
35 67 1.91 0.25
27 50 1.85 0.25
50 67 1.34 0.25
27 67 2.48 0.50
35 67 1.91 0.50
27 50 1.85 0.50
50 67 1.34 0.50
27 67 2.48 0.75
35 67 1.91 0.75
27 50 1.85 0.75
50 67 1.34 0.75
27 — — 1
35 — — 1
50 — — 1
67 — — 1

a�1=volumetric proportion of fibers with radius a1.

Fig. 5 Experimental data for fiber masses where d1=27 �m
and d2=50 �m and the 1-fraction �1 are 0.25, 0.50, and 0.75,
respectively. The solid lines are model fits to determine the
experimental reduction factors �b

expt and �t
expt.

Journal of Applied Mechanics JULY 2009, Vol. 76 / 041014-5

Downloaded 04 May 2010 to 171.66.16.44. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



special case of a monodisperse fiber diameter, the reduction fac-
tors reduce to unity and the previous model is recovered. The
reduction factors, Eqs. �33� and �43�, imply that the response of a
fiber mass is independent of the absolute scale of the fibers. No-
tice that this is not only true for monodisperse fibers but also for
polydisperse ones as long as all fibers scale in the same way.

The experimental results are in excellent agreement with the
theoretical ones, cf. Figs. 6 and 7. The reduction factors �espe-
cially �b� for our most extreme compositions seem to be slightly
underestimated by the model, as shown in Fig. 6, indicating that
we are close to the limit of what the model can handle. The ex-
planation for the deviation is the fundamental choice of relation
between the expected force rate and the expected contact displace-

ment rate by the total average of the expected compliance rather
than by the local compliance of a particular contact. A result of
this assumption is that when the proportion of the finer fibers
decreases, their contribution to the total average will be exagger-
ated, leading to a too compliant deformation. Nevertheless, with-
out this assumption, the stiffer contacts �e.g., coarser fibers� would
contribute far more excessively to the total average leading to a
severely overstiff model. Apparently, the aforementioned assump-
tion is valid when the differences in the mixed fiber properties are
moderate.

However, at moderate diameter ratios, it seems as though the
two effects discussed in the two previous paragraphs are either
negligible or cancel each other out, and the main conclusion is
that the present approach successfully predicts the reduction in the
pressure response for a fiber mass consisting of two �or more�
different fiber diameters compared to a fiber mass of uniform fiber
diameter. These predictions are remarkably accurate, considering
that no new adjustable parameters have been introduced.

It is finally noted that the error of neglecting the difference in
fiber diameter is substantial. Judging from the bottom data in Fig.
6, it may lead to predictions that are off by an order of magnitude.
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Exact Solutions for the
Generalized Euler’s Problem
This paper is concerned with buckling analysis of a nonuniform column with classical/
nonclassical boundary conditions and subjected to a concentrated axial force and dis-
tributed variable axial loading, namely, the generalized Euler’s problem. Exact solutions
are derived for the buckling problem of nonuniform columns with variable flexural stiff-
ness and under distributed variable axial loading expressed in terms of polynomial func-
tions. Then, more complicated buckling problems are considered such as that the distri-
bution of flexural stiffness of a nonuniform column is an arbitrary function, and the
distribution of axial loading acting on the column is expressed as a functional relation
with the distribution of flexural stiffness and vice versa. The governing equation for such
problems is reduced to Bessel equations and other solvable equations for seven cases by
means of functional transformations. A class of exact solutions for the generalized Euler’s
problem involved a nonuniform column subjected to an axial concentrated force and
axially distributed variable loading is obtained herein for the first time in literature.
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1 Introduction
Structural components with varying cross sections are com-

monly used in buildings, bridges, mechanical and aeronautical
engineering in an effort to achieve a better distribution of strength
and weight of structures, and sometimes to satisfy architectural
and functional requirements. The stability of such structural mem-
bers subjected to compressive forces is a subject of considerable
scientific and practical interest that has been studied extensively,
and is still receiving attention in literature. Since previous studies
on this topic are quite extensive, only selected research works on
finding exact solutions or closed-form solutions for the buckling
of nonuniform columns are cited further.

Euler �1� pioneered the study of buckling of a column subjected
to a concentrated force or under its own weight. Since then, exact
buckling load solutions for simple cases, such as a nonuniform
column with specific nonuniformity under a concentrated axial
load at its top or end, columns with several types of variable cross
sections subjected to uniformly distributed axial loading or a cu-
neiform column under its own weight were obtained by several
researchers including Greenhill �2�, Morley �3�, Dinnik �4,5�, Kar-
man and Biot �6�, Timosenko and Gere �7�, and others. Gere and
Carter �8� derived exact buckling solutions for several special
types of tapered columns with simple boundary conditions in
terms of Bessel functions. Ermopoulos �9� studied the buckling of
tapered bars, axially compressed by concentrated loads applied at
various locations along their axes. The law of stiffness variation
chosen in his study was a power function with second order. Wil-
liams and Aston �10� provided several curves that enable the
buckling loads to be found for tapered columns with a uniform
axial force applied over all their length. Arbabi and Li �11� pre-
sented a semianalytical procedure for the buckling of elastic col-
umns with step varying thickness. Siginer �12� investigated the
stability of a column whose flexural rigidity follows a continuous
linear variation along the column. The exact solutions for buck-
ling of a nonuniform column under a concentrated force and vari-
ably distributed axial loading �as shown in Fig. 1� were obtained
by Li et al. �13,14� for the following two cases:

Case 1: K�x� = K�0��1 + �
x

L
��

, N�x� = N0�1 + �
x

L
�c

Case 2: K�x� = K�0�e��x/L�, N�x� = N�0�ec�x/L�

where K�x�, N�x�, and L are the flexural stiffness, axial force, and
length of the column, respectively, and �, �, and c are the param-
eters relating to the variations of the stiffness and axial loading.

Recently, Elishakoff and co-worker �15–19� obtained several
closed-form solutions for buckling of inhomogeneous columns,
which considered a column with variable stiffness under axially
distributed loading. In these studies, the buckling mode of a col-
umn was given first; then, the variation of the flexural stiffness
along the axis of the column was determined so that the column
had the prescribed buckling mode. The variations of stiffness,
axial loading, and buckling mode were all selected to be polyno-
mial functions.

In the first part of this paper, exact solutions are obtained for the
buckling problem of a nonuniform column with variable flexural
stiffness and distributed variable axial loading all described in
terms of polynomial functions. In the present buckling analysis,
the concerned nonuniform column is also subjected to a concen-
trated axial force at its top and various kinds of boundary condi-
tions including classical and nonclassical ones are taken into ac-
count. Furthermore, more complicated problems are considered in
this study, such as that the distribution of flexural stiffness of a
nonuniform column is an arbitrary function, and the distribution
of axial loading acting on the column is expressed as a functional
relation with the distribution of flexural stiffness and vice versa.
The governing equation for such buckling problems is reduced to
Bessel equations and other solvable equations for several cases by
means of functional transformations. Exact solutions for the buck-
ling problem of a nonuniform column subjected to an axial con-
centrated force at its top and axially distributed variable loading
and with various classical/nonclassical boundary conditions are
thus presented in this paper.

Euler’s problem, namely, buckling of a uniform column sub-
jected to a concentrated force or under its own weight, is gener-
alized to buckling of a nonuniform column with classical/
nonclassical boundary conditions and subjected to a concentrated
axial force and axially distributed variable loading. It is referred
as the generalized Euler’s problem in this paper. Literature review
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reveals that, generally, the previous studies on the buckling analy-
sis of a nonuniform column under variably distributed loading
have directed their investigations to special functions for describ-
ing the distributions of flexural stiffness and axial distributed
forces to derive analytical solutions. A successful attempt is made
herein to present the exact solutions for the generalized Euler’s
problem, which includes more complicated problems such as ar-
bitrary distribution of flexural stiffness or axial forces. It is noted
that some of the exact solutions presented in this paper are ob-
tained for the first time in literature. Although in the absence of
the exact solutions, the generalized Euler’s problem can be solved
using approximated methods or numerical techniques. However,
the present exact solutions could provide adequate insight into the
physics of the problem and can be easily implemented for struc-
tural stability analysis. Furthermore, the availability of the exact
solutions can help in examining the accuracy of the approximated
or numerical solutions. Therefore, it is always desirable to obtain
the exact solutions to such an important problem.

2 Polynomial Solutions for the Generalized Euler’s
Problem

The governing differential equation for buckling of a nonuni-
form column subjected to a concentrated axial force N0 at its top
and a variably distributed axial loading q�x� applied over all its
length �as shown in Fig. 1� is expressed by

d2

d2x
�K�x�

d2y�x�
dx2 � +

d

dx
�N�x�

dy�x�
dx

� = 0 �1�

where K�x�=EI�x� is the flexural stiffness, E=Young’s modulus,
it may be a constant or a function of x, I=the moment of inertia,
N�x�=N0+	0

xq�x�dx= axial force, y�x�=displacement, x is the
axial coordinate, and the origin of the coordinate system is set at
the top of the column, as shown in Fig. 1.

It is assumed that the variations of the stiffness, axial force, and
displacement are described by the following polynomial func-
tions:

K��� = 

i=0

m

bi�
i �2�

N��� = N0

0

n

�i�
i �3�

y��� = 

i=0

p

ai�
i �4�

where �=x /L is a nondimensional axial coordinate and L is the
length of the column. All �i are known, and ai may be determined
from the boundary conditions of the column and it is now required
to find the critical value of N0.

Substituting Eqs. �2�–�4� into Eq. �1�, one obtains

d2

d�2�

i=0

m

�bi�
i�

d2

d�2

i=0

p

�ai�
i�� + N0L2 d

d�
�


i=0

n

��i�
i�

d

d�
i=0

p

�ai�
i��

= 0 �5�

This equation is valid for the variations of K�x� and N�x� ex-
pressed in terms of polynomial functions. It can be seen from the
above equation that m, n, and p must satisfy the following rela-
tionship:

m + �p − 2� − 2 = n + �p − 1� − 1

or

m = n + 2 �6�
In order to ensure the four boundary conditions at the two ends

of a column be satisfied, the order of the displacement polynomial
function must be greater or equal to 4.

To simplify the analysis, p is taken as 4 in this study, then Eq.
�5� becomes



i=0

n+2

�2i�i − 1�a2bi�
i−2 + 6i�i + 1�a3bi�

i−1 + 12�i + 1��i + 2�a4bi�
i�

+ N0L2

0

n

�ia1�i�
i−1 + 2�i + 1�a2�i�

i + 3�i + 2�a3�i�
i+1

+ 4�i + 3�a4�i�
i+2� = 0 �7�

To ensure Eq. �7� to be valid, all coefficients in front of �i must
vanish; hence, a set of equations is obtained as follows:

For �0, 4a2b2 + 12a3b1 + 24a4b0 + N0L2�a1�1 + 2a2�0� = 0

�8�

For �1, 6a2b3 + 18a3b2 + 36a4b1 + N0L2�a1�2 + 2a2�1 + 3a3�0�

= 0 �9�

For �i�2 � i � n�, 2�i + 1�a2bi+2 + 6�i + 2�a3bi+1

+ 12�i + 2�a4bi + N0L2�a1�n+1 + 2a2�i + 3a3�i−1

+ 4a4�i−2� = 0 �10�

For �n+1, 6�n + 3�a3bn+2 + 12�n + 3�a4bn+1 + N0L2�3a3�n

+ 4a4�n−1� = 0 �11�

For �n+2, 3�n + 4�bn+2 + N0L2�n = 0 �12�

It is evident that there is a number of �n+3� equations involved
and a number of �n+4� unknowns, which are solvable if an arbi-
trary unknown is given a value. If the arbitrary unknown coeffi-
cient is selected to be bn+2, the critical value of the concentrated
axial force is thus determined from Eq. �12� as

Fig. 1 A H-H column subjected to a concentrated axial force at
its top and a distributed axial force
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N0 = −
3�n + 4�

�nL2 bn+2 �13�

It is observed from the above equation that the coefficient bn+2
must be a negative constant. In general, all �i and L are given,
only bi �i=0,1 ,2 , . . . ,n+1� are needed to be determined. First of
all, bn+1 is determined from Eq. �11� as

bn+1 = −
a3

2a4
bn+2 −

N0L2�3a3�n + 4a4�n−1�
12�n + 3�a4

�14�

After bn+1 is found, bi�2� i�n� can be determined from Eq. �10�
as

bi = −
a3

2a4
bi+1 −

a2

6a4
bi+2

−
N0L2�a1�i+1 + 2a2�i + 3a3�i−1 + 4a4�i−2�

12�i + 2�a4
�15�

Using Eqs. �9� and �8�, one obtains

b1 = −
a2

6a4
b3 −

a3

2a4
b2 −

N0L2�a1�2 + 2a2�1 + 3a3�0�
36a4

�16�

b0 = −
a2

6a4
b2 −

a3

2a4
b1 −

N0L2�a1�1 + 2a2�0�
24a4

�17�

Equations �13�–�17� are called the general solutions of the gov-
erning differential equation. The particular solutions for various
supporting conditions can be obtained according to the formulas
presented above and the specific boundary conditions as follows.

1. Hinged-hinged (H-H) column. The boundary conditions for
this case �Fig. 1� can be written as

y�0� = 0, y��0� = 0 �18a�

y�1� = 0, y��1� = 0 �18b�
Applying Eqs. �18a� and �18b� results in

a0 = 0, a1 = 1, a2 = 0, a3 = − 2, a4 = 1 �19�

i.e., y��� is given by

y��� = � − 2�3 + �4 �20�

y��� is the buckling mode shown in Fig. 2
Substituting Eq. �19� into Eqs. �14�–�17�, one obtains

bn+1 = bn+2 −
N0L2�− 6�n + 4�n−1�

12�n + 3�
�21a�

bi = bi+1 −
N0L2��i+1 − 6�i−1 + 4�i−2�

12�i + 2�
�21b�

b1 = b2 −
N0L2��2 − 6�0�

36
�21c�

b0 = b1 −
N0�1L2

24
�21d�

2. Clamped-free (C-F) column. The boundary conditions for
this case �shown in Fig. 3� can be written as

y��0� = 0, y��0� = 0 �22a�

y�1� = 0, y��1� = 0 �22b�
Similarly, we have

a0 = 3, a1 = − 4, a2 = 0, a3 = 0, a4 = 1 �23�

i.e., y��� is given by

y��� = 3 − 4� + �4 �24�

y��� is the buckling mode shown in Fig. 4.
Substituting Eq. �23� into Eqs. �14�–�17� results in

bn+1 = −
N0L2�n−1

3�n + 3�
�n � 2� �25a�

bi = −
N0L2�− �i+1 + �i−2�

3�i + 2�
�2 � i � n� �25b�

Fig. 2 The buckling mode of a H-H column

Fig. 3 A C-F column subjected to a concentrated axial force at
its top and a distributed axial force
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b1 =
N0L2�2

9
�25c�

b0 =
N0L2�1

6
�25d�

3. Clamped-clamped (C-C) column. The boundary conditions
for this case are

y�0� = 0, y��0� = 0 �26a�

y�1� = 0, y��1� = 0 �26b�
Hence, the following results are obtained:

a0 = 0, a1 = 0, a2 = 1, a3 = − 2, a4 = 1 �27�

i.e., y��� is given by

y��� = �2 − 2�3 + �4 �28�
Substituting Eq. �27� into Eqs. �14�–�17� yields

bn+1 = bn+2 −
N0L2�− 3�n + 2�n−1�

6�n + 3�
�29a�

bi = bi+1 −
bi+2

6
−

N0L2��i − 3�i−1 + 2�i−2�
6�i + 2�

�29b�

b1 = −
b3

6
+ b2 −

N0L2��2 − 3�0�
18

�29c�

b0 = −
b2

6
+ b1 −

N0L2�0

12
�29d�

4. Camped-hinged (C-H) column. Considering a column with a
hinged end at �=0 and a clamped support at �=1, the boundary
conditions for this case can be written as

y�0� = 0, y��0� = 0 �30a�

y�1� = 0, y��1� = 0 �30b�
Applying Eqs. �30a� and �30b� to Eq. �4� yields

a0 = 0, a1 = 1, a2 = 0, a3 = − 3, a4 = 2 �31�

y��� = � − 3�3 + 2�4 �32�
Substituting Eq. �31� to Eqs. �14�–�17� results in

bn+1 =
3

4
bn+2 −

N0L2�− 9�n + 8�n−1�
24�n + 3�

�n � 2� �33a�

bi = −
3

4
bi+1 −

N0L2��i+1 − 9�i−1 + 8�i−2�
24�i + 2�

�2 � i � n�

�33b�

b1 =
3

4
b2 −

N0L2��2 − 9�0�
72

�33c�

b0 =
3

4
b1 −

N0L2�1

48
�33d�

5. Hinged-guided (H-G) column. A column with a hinged end at
�=0 and a guided end at �=1 is considered here. The correspond-
ing boundary conditions for this case are

y�0� = 0, y��0� = 0 �34a�

y��1� = 0, y��1� = 0 �34b�
Using Eqs. �4�, �34a�, and �34b�, one obtains

a0 = 0, a1 = 8, a2 = 0, a3 = − 4, a4 = 1 �35�
The buckling mode is thus described by

y��� = 8� − 4�3 + �4 �36�
Substituting Eq. �35� into Eqs. �14�–�17� yields

bn+1 = 2bn+2 −
N0L2�− 3�n + �n−1�

3�n + 3�
�37a�

bi = 2bi+1 −
N0L2�2�i+1 − 3�i−1 + �i−2�

3�i + 2�
�37b�

b1 = 2b2 −
N0L2�2�2 − 3�0�

9
�37c�

b0 = 2b1 −
N0L2�1

3
�37d�

6. Clamped-guided (C-G) column. Next, considering a C-G col-
umn with a clamped end at �=0 and a guided end at �=1, the
boundary conditions for this case are

y�0� = 0, y��0� = 0 �38a�

y��1� = 0, y��1� = 0 �38b�
Using Eqs. �4�, �38a�, and �38b� leads to

a0 = 0, a1 = 0, a2 = 4, a3 = − 4, a4 = 1 �39�
The buckling mode is expressed by

y��� = 4�2 − 4�3 + �4 �40�
Substituting Eq. �40� into Eqs. �14�–�17� results in

bn+1 = 2bn+2 −
N0L2�− 3�n + �n−1�

3�n + 3�
�41a�

bi = 2bi+1 −
2

3
bi+2 −

N0L2�2�i − 3�i−1 + �i−2�
3�i + 2�

�41b�

b1 = −
2

3
b3 + 2b2 −

N0L2�2�2 − 3�0�
9

�41c�

Fig. 4 The buckling mode of a C-F column
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b0 = −
2

3
b2 + 2b1 −

N0L2�0

3
�41d�

7. Spring-spring (S-S) column. The boundary conditions for this
case are

M�0� = − K�0y��0�, Q�0� = Ku0y�0� + N0y��0� �42a�

y��0� = ��0y��0�, y��0� = − �u0y�0� − ��0��0 + �n0�y��0�
�42b�

M�1� = K�1y��1�, Q�1� = − Ku1y�1� + N1y��1� �42c�

y��1� = − ��1y��1�, y��1� = �u1y�1� − ��1��1 − �n1�y��1�
�42d�

The definitions of the parameters involved in the above equa-
tions are given below. Applying these boundary conditions to Eq.
�4� results in

a0 =
1

�D��
0 − ��0 2 0

0 a22 0 6

c3 ��1 a33 a43

c4 a24 a34 a44

�, a1 =
1

�D��
0 0 2 0

�u0 0 0 6

0 c3 a33 a43

− �u1 c4 a34 a44

�
a2 =

1

�D��
0 − ��0 0 0

�u0 a22 0 6

0 ��1 c3 a43

− �u1 c24 c4 a44

� , �43�

a3 =
1

�D��
0 − ��0 2 0

�u0 a22 0 6

0 ��1 a33 c3

− �u1 a24 a34 c4

�
where

�0 =
K��0�
K�0�

, ��0 =
K�0

K�0�
, �n0 =

N0

K�0�
, �1 =

K��1�
K�1�

�u0 =
Ku0

K�0�
, �u1 =

Ku1

K�1�
, ��1 =

K�1

K�1�
, �n1 =

N1

K�1�

a22 = �0��0 + �n0, c3 = − 12 − 4��1,

c4 = �u1 − 4�1��1 + 4�n1 − 24

a24 = �1��1 − �u1 − �n1, a33 = 2 + 2��1, a43 = 6 + 3��1

a34 = 2�1��1 + 2�n1 − �u1, a44 = 3�1��1 − 3�n1 − �u1 + 6

�D� = �
0 − ��0 2 0

�u0 a22 0 6

0 ��1 a33 a43

− �u1 a24 a34 a44

�
in which Ku0, K�0, Ku1, and K�1 are the constants of the transla-
tional spring and rotational spring attached to the column at x
=0 and L, respectively; a4 is an arbitrary constant.

Substituting Eq. �43� into Eq. �4� and Eqs. �13�–�17�, the buck-
ling mode y���, the critical buckling force N0, and the correspond-
ing flexural stiffness K��� can be determined.

3 Functional Solutions for the Generalized Euler’s
Problem

In order to obtain exact solutions for more complicated cases of
the generalized Euler’s problem, the governing differential equa-
tion for buckling of a nonuniform column under a concentrated
axial force at its top end and axially distributed variable loading is
rewritten in the following form �14�:

d2M�x�
dx2 −

1

N�x�
dN�x�

dx

dM�x�
dx

+
N�x�
K�x�

M�x� =
C0

N�x�
dN�x�

dx
�44�

where

dN�x�
dx

= q�x�

q�x� is the intensity of axial distributed force at x, M�x�, N�x�, and
K�x� are the bending moment, axial force, and flexural stiffness,
respectively, and C0 is an integral constant, which can be ex-
pressed as �14�

C0 = N�x�	�x� − Q�x� �45�

where 	�x� and Q�x� are the slope and shear force at section x of
the column, respectively. Obviously, for a cantilever column C0
=0, as for this case, the following equation is valid:

Q�x� = N�x�	�x� �46�
As is well known, the general solution of Eq. �44� can be writ-

ten as

M�x� = C1S1�x� + C2S2�x� + C0SN�x� �47�

where C1 and C2 are integral constants; S1�x� and S2�x� are the
homogeneous solutions of Eq. �44�; SN�x� is a special solution of
Eq. �44�, which is given by

SN�x� = − S1�x� 
 N��x�S2�x�dx

N�x��S1�x�S2��x� − S2�x�S1��x��

+ S2�x� 
 N��x�S1�x�dx

N�x��S1�x�S2��x� − S2�x�S1��x��
�48�

where the prime indicates differentiation with respect to x.
It is evident that the key step for solving Eq. �44� is to deter-

mine the homogeneous solutions. In order to achieve this objec-
tive, the following functional transformations are adopted:


 =
 N�x�dx, P��� = N−1�x�K−1�x� �49�

K�x� = an arbitrary function of x, N�x� = K−1�x�P−1�
 N�x�dx�
�50a�

or

N�x� = an arbitrary function of x, K�x� = N−1�x�P−1�
 N�x�dx�
�50b�

Substituting Eq. �50a� or Eq. �50b� into the homogeneous equa-
tion of Eq. �44� yields

d2m�
�
d
2 + P�
�m�
� = 0, m�
� = M�x� �51�

It can be seen that the expression of Eq. �51� is much simpler than
that of Eq. �44�. Therefore, the solution of Eq. �51� is easier to be
found. Especially 
 is a function of x, m�
� is actually a functional
expression, and the solution of Eq. �51� is thus a functional solu-
tion; i.e., one solution of Eq. �51� actually represents a class of
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solutions of the homogenous equation of Eq. �44�. If the expres-
sions of N�x� and K�x� are given, P��� can be determined from
Eq. �49�, and the homogeneous solutions can be obtained by solv-
ing Eq. �51�.

Obviously, the solutions of Eq. �51� are dependent on the ex-
pression of P�
�; such solutions for several cases that are impor-
tant in engineering practice are given in the Appendix.

After Si�x��i=1,2� and SN�x� are found, differentiating Eq. �47�
with respect to x results in

Q�x� = C1S1��x� + C2S2��x� + C0SN� �x� �52�
Substituting Eq. �52� into Eq. �45� leads to

	�x� = C1
S1��x�
N�x�

+ C2
S2��x�
N�x�

+ C0
1 + SN� �x�

N�x�
�53�

Integrating Eq. �53� with respect to x yields the displacement as

y�x� = C1
 S1��x�
N�x�

dx + C2
 S2��x�
N�x�

dx + C0
 1 + SN� �x�
N�x�

dx + C3

�54�
The eigenvalue equation for the buckling of the generalized Eul-
er’s problem can be established based on the specific boundary
conditions as follows.

1. H-H column. In order to easily derive the eigenvalue equa-
tion, the boundary conditions for this case �shown in Fig. 1� are
written as

M�0� = 0, M�L� = 0, Q�L� = Q�0� �55�
Applying these conditions to Eqs. �47� and �52� leads to the ei-
genvalue equation as

� S1�0� S2�0� SN�0�
S1�L� S2�L� SN�L�

S1��L� − S1��0� S2��L� − S2��0� SN� �L� − SN� �0�
� = 0 �56�

2. C-F column. As mentioned before, it was proved that C0
=0 for this case. Using the boundary conditions �Fig. 3�

M�0� = 0, Q�L� = 0 �57�

results in the eigenvalue equation as

S1�0�S2��L� − S2�0�S1��L� = 0 �58�
3. C-H column. Using the boundary conditions

M�0� = 0, 	�L� = 0, Q�L� = Q�0� �59�

the eigenvalue equation is derived as

� S1�0� S2�0� SN�0�
S1��L� S2��L� 1 + SN� �L�

S1��L� − S1��0� S2��L� − S2��0� SN� �L� − SN� �0�
� = 0 �60�

4. S-S column. The boundary conditions for this case are

M�0� = − K�0	�0�, M�L� = K�L	�L�
�61�

Q�0� = Ku0y�0� + N�0�	�0�, Q�L� = − KuLy�L� + N�L�	�L�

where Ku0, K�0, KuL, and K�L are the constants of the translational
spring and rotational spring attached to the column at x=0 and L,
respectively.

Applying these boundary conditions to Eqs. �47� and �52�–�54�
yields the eigenvalue equation as

�
S1�0� +

K�0S1��0�
N0

S2�0� +
K�0S2��0�

N0
SN�0� +

K�0�1 + SN� �0��
N0

0

S1�L� +
K�LS1��L�

N�L�
S2�L� +

K�LS2��L�
N�L�

SN�L� −
K�L�1 + SN� �L��

N�L�
0

0 0 − 1 − Ku0

KuL

0

L
S1��x�
N�x�

dx KuL

0

L
S2��x�
N�x�

dx − 1 + KuL

0

L
1 + SN� �x�

N�x�
dx KuL

� = 0 �62�

4 Examples and Discussions

4.1 Several Special Cases. Based on the derived solutions
given in Eqs. �13�, �20�, and �21a�–�21d� for H-H columns, sev-
eral special cases of the solutions are discussed herein.

�1� Special Case 1.

n = 0, �0 = 1, N�L� = N0 = const �63�
This special case represents a nonuniform column with simply
supported at its both ends and subjected to a concentrated axial
force N0 at its top.

Substituting Eq. �63� into Eqs. �13� and �21a�–�21d� results in

N0 = −
12b2

L2 �64�

b0 = b1 = − b2 �65�

If setting b2=−K�0�, then the flexural stiffness variation is ex-
pressed by

K��� = K�0��1 + � − �2� �66�

The resulted y���, N0, and K��� are the same as those obtained
by Elishakoff �16�, thus verifying the reliability of the derived
solutions.

�2� Special Case 2.

n = 1, �0 = 1, N��� = N0�1 + �1�� �67�

This case represents a nonuniform column with simply supported
as its both ends and subjected to a concentrated force N0 at its top
and a uniform distributed force applied over all its length with
intensity �1N0.

Substituting Eq. �67� into Eq. �13� and Eqs. �14�–�17� leads to

N0 = −
15b3

�1L2 �68a�

b2 = �10

�1
− 7�b3

8
�68b�

b1 = − �10

�1
+ 7�b3

8
�68c�
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b0 = − �10

�1
+ 2�b3

8
�68d�

If setting b2=−8K�0�, then we have

K��� = K�0���10

�1
+ 2� + �10

�1
+ 7�� − �10

�1
− 7��2 − 8�3�

�69�
�3� Special Case 3.

n = 0, �0 = 0, �1 = 1, N��� = N0� �70�

This case represents a nonuniform column subjected to a uni-
formly distributed force with intensity N0. Obviously, it is equiva-
lent to the Special Case 2 when �0=0.

Using Eqs. �13�–�17� and �70� yields

b1 = b2 = − 7
8b3 �71a�

b0 = − 2
8b3 �71b�

N0 is the same as that in Eq. �68a� if setting �1=1.
Setting b3=−8K�0� results in

K��� = K�0��2 + 7� + 7�2 − 8�3� �72�
The above results obtained from the present solutions are the

same as those obtained by Elishakoff �15�.
The above discussions and comparisons for the three special

cases not only verify the reliability of the present solutions but
also illustrate that the existing analytical solutions in literature for
the buckling problems of nonuniform columns and bars actually
result as special cases of the exact solutions obtained in this paper.
This is due to the fact that this study considered more general
buckling problems than previous researchers did, which is re-
ferred to as the generalized Euler’s problem, namely, buckling of
a nonuniform column with classical/nonclassical boundary condi-
tions and subjected to a concentrated axial force and axially dis-
tributed variable loading. In particular, more complicated buckling
problems of nonuniform columns such as arbitrary distribution of
flexural stiffness or axial forces were considered in the present
study.

A comparison among the results of the three special cases is
shown in Fig. 5, where all K��� represent the buckling mode de-
scribed by Eq. �20� and the critical buckling force is expressed as
follows:

N0 =
120K�0�

L2 �73�

It can be seen from Fig. 5 that the stiffness K��� for Special
Case 3 is less than those for Special Cases 1 and 2, because
Special Case 3 represents the column subjected to a uniformly
distributed force with intensity N0 only, and the internal axial
force is N0�1 at �=�1, which is less than N0 when ��1, Its maxi-
mal value is N�0� at the bottom end; while Special Case 1 is
corresponding to the column subjected to a concentrated force at
its top, the internal axial force from the top to the bottom end is a
constant N0; such a case thus requires greater stiffness K��� than
that for Special Case 3. It is also found that the required stiffness
for Special Case 2 is greater than that for Special Case 1, because
Special Case 2 represents the column subjected to a concentrated
force N0 at its top and a uniformly distributed force; hence, the
internal axial force N��� for Special Case 2 is greater than that for
Special Case 1. It is shown in this figure that K��� for Special
Case 2 increases as �1 increases, because N��� increases as �1
becomes larger.

4.2 Stability Analysis of a High-Rise Structure. A high-rise
structure with 205 m height �as shown in Fig. 6� is considered
herein as a numerical example to illustrate the application and
effectiveness of the present solutions and analysis procedure. The
values of the flexural stiffness and axial force at several sections
of this structure are listed in Table 1. It is required to determine
the critical buckling force and the safety coefficient for buckling
of the structure.

The stability analysis procedure based on the obtained exact
solutions is as follows.

�1� Selection of the functions for describing the distributions of
flexural stiffness and axial force According to the values of the
flexural stiffness at several sections of this structure listed in Table
1, the following functions are selected for describing the varia-
tions of the flexural stiffness and axial force.

K�x� = K�0��1 + �
x

L
�, N�x� = N0�1 + �

x

L
� �74�

�2� Determination of P���. Using Eqs. �50b� and �74�, we have

P��� = �d��c �75�

where

Fig. 5 Comparison among the three special cases
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 =
 N�x�dx =
NL

2�
�1 + �

x

L
�2

, c = −
3

2
, d = �
N�2/3 2�

NL

�3� Determination of the solutions for buckling of the column.
The expression of P�
� determined above belongs to a special
case of Case 2 in the Appendix; the solutions are found to be

S1�
� = �d
�1/2J2�
�d
�1/4� �76a�

S2�
� = �d
�1/2Y2�
�d
�1/4� �76b�


 =
4

b
�76c�

where J2�·� and Y2�·� are Bessel functions of the first and second
kinds, of order 2, respectively.

�4� Determination of the critical buckling force and the safety
coefficient for buckling. The eigenvalue equation for buckling of
this structure is Eq. �58�. Substituting Eqs. �76a�–�76c� into Eq.
�58� and solving it result in the critical buckling force as Ncr�0�
=2.357�107 N The safety coefficient, k, for buckling of the
structure is thus determined as

k =
Ncr�0�

N0
=

23.57 � 106

3.207 � 106 = 7.350

5 Conclusions
In this study, the exact solutions were derived for the buckling

problems of nonuniform columns with variable flexural stiffness
and distributed variable axial loading expressed in terms of poly-
nomial functions. Although several closed-form solutions for
buckling of a nonuniform column subjected to a concentrated
axial force at its top or a axially distributed force were proposed

by previous researchers, more complicated cases, such as that a
nonuniform column with arbitrary variation of flexural stiffness is
expressed as a functional relation with the distribution of the flex-
ural stiffness and vice versa, were considered in this paper. The
governing equation for such problems was reduced to Bessel
equations and other solvable equations for several cases by means
of functional transformations. The exact solutions for the buckling
problem of nonuniform columns subjected to an axial concen-
trated force and axially distributed variable loading were thus ob-
tained. It was shown through the examples that several existing
closed-form solutions for the buckling problems of nonuniform
columns actually were special cases of the exact solutions ob-
tained in this paper.

In this paper, the governing equation for buckling of nonuni-
form columns subjected to a concentrated axial compressive force
and axially distributed variable loading was given by the second
order differential equation for bending moment M�x�. Then, dif-
ferentiating and integrating M�x� with respect to x can determine
shear force, slope, and displacement. The present procedure is
actually simpler than conventional approaches, which need solv-
ing the fourth order differential equation for displacement.

Acknowledgment
The work described in this paper was fully supported by a grant

from the Research Grants Council of Hong Kong Special Admin-
istrative Region, China �Project No. CityU 116906�

Appendix: Exact Solutions of Equation (51) for Several
Cases

Case 1.

P�
� = aeb
 − c �A1�

S1�
� = Jv��eb
/2�, S2�
� = Y���eb
/2�
�A2�

�2 =
4a

b2 , �2 =
4c

b2

where Jv�·� and Yv�·� are Bessel functions of the first and second
kinds, of order v, respectively.

Case 2.

P�
� = �a + b
�c, c � − 2 �A3�

S1�
� = �a + b
�1/2J��
�a + b
�1/2��

S2�
� = �a + b
�1/2Y��
�a + b
�1/2�� �A4�


2 =
4�2

b2 , �2 =
1

c + 2

When c=−2, Eq. �51� becomes an Euler equation.
Case 3.

P�
� = �a
2 + b
 + c�−2 �A5�

�S1�
� = �a
2 + b
 + c�1/2 sin �A�

S2�
� = �a
2 + b
 + c�1/2 cos �A�
� for A � 0 �A6�

Fig. 6 Sketch of a high-rise structure

Table 1 Values of flexural stiffness and axial force at several sections of the structure. Note
that the data in parentheses are calculated by Eq. „74….

x �m� 0 25 50 70 90 110 135 170 205

K�x� 1.241 1.780 2.423 3.002 3.641 4.347 5.319 7.830 8.552
�1.241� �1.780� �2.423� �3.002� �3.641� �4.347� �5.319� �7.830� �8.552�

N�x� 3.207 3.841 4.486 4.987 5.494 6.008 6.636 7.528 4.419
�3.207� �3.841� �4.486� �4.987� �5.494� �6.008� �6.636� �7.528� �4.419�
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A = 1 + ac −
1

4
b2, � =
 d


a
2 + b
 + c

� S1�
� = �a
2 + b
 + c�1/2e�A�

S2�
� = �a
2 + b
 + c�1/2e−�A�� for A � 0 �A7�

� S1�
� = �a
2 + b
 + c�1/2

S2�
� = �a
2 + b
 + c�1/2�
� for A = 0 �A8�

Case 4.

P�
� = a�
2 + b�−2, a � 0, b � 0 �A9�

S1�
� = �
2 + b�1/2 sin �

S2�
� = �
2 + b�1/2 cos � �A10�

� = �a + b

b
�1/2

arctan



b1/2

Case 5.

P�
� = a�
2 − b�−2, a � 0, b � 0 �A11�

S1�
� = �
2 − b�1/2 sin �

S2�
� = �
2 − b�1/2 cos � �A12�

� =
1

2
�a − b

b
�1/2

ln
b1/2 + 


b1/2 − 

, �
� � b1/2

Case 6.

P�
� = acb� �A13�
This is a special case of Eq. �A1�. The solutions are the same as
those of Eq. �A2� when setting �=0.

Case 7.

P�
� = a
c−2 − b2
2c−2 �A14�

S1�
� = 
1/2�1−c��� a

2bc
,−

1

2c
;
2b

c

c�

�A15�

S2�
� = �2b

c

c�1−�1/2�c

�� a

2bc
−

1

2c
+ 1,2 −

1

2c
;
2b

c

c�

where ��x ,x ,x� represents the � function �20�.

References
�1� Euler, L., 1757, “Sur La Forces Des Colunnes,” Memoires de l’Academie

Royale des Sciences et Belles Letters, Berlin, 13, pp. 252–282.
�2� Greenhill, A. G., 1881, “Determination of the Greatest Height Consistent With

Stability That a Vertical Pole or Mast Can Be Made, and of the Greatest Height
to Which a Tree of Given Proportions Can Grow,” Proc. Cambridge Philos.
Soc., 4, pp. 765–774.

�3� Morley, A., 1917, “Critical Loads for Long Tapering Struts,” Engineering
�London�, 104, p. 295.

�4� Dinnik, A. N., 1912, “Buckling Under Own Weight,” Proceedings of the Don
Polytechnic Institute, 1, p. 19.

�5� Dinnik, A. N., 1955, “Selected Papers, Application of Bessel Function to the
Theory of Elasticity Problems,” Ukrainian Academy of Science, 2, pp. 73–87.

�6� Karman, T. V., and Biot, M. A., 1940, Mathematical Methods in Engineering,
McGraw-Hill, New York.

�7� Timoshenk, S. P., and Gere, G. M., 1961, Theory of Elastic Stability, McGraw-
Hill, New York.

�8� Gere, J. M., and Carter, W. O., 1962, “Critical Buckling Loads for Tapered
Columns,” ASCE J. Struct. Div., 88�1�, pp. 1346–1354.

�9� Ermopoulos, J. C., 1986, “Buckling of Tapered Bars Under Stepped Axial
Loads,” J. Struct. Eng., 112�6�, pp. 1346–1354.

�10� Williams, F. W., and Aston, G., 1989, “Exact or Lower Bound Tapered Col-
umn Buckling Loads,” J. Struct. Eng., 115�5�, pp. 1088–1100.

�11� Arbabi, F., and Li, F., 1991, “Buckling of Variable Cross-Section Columns—
Integral Equation Approach,” J. Struct. Eng., 117�8�, pp. 2426–2441.

�12� Siginer, A., 1992, “Buckling of Columns of Variable Flexural Rigidity,” J.
Eng. Mech., 118�3�, pp. 640–643.

�13� Li, Q. S., Cao, H., and Li, G., 1994, “Stability Analysis of Bars With Multi-
Segments of Varying Cross-Section,” Comput. Struct., 53�5�, pp. 1085–1089.

�14� Li, Q. S., Cao, H., and Li, G., 1995, “Stability Analysis of Bars With Varying
Cross-Section,” Int. J. Solids Struct., 32�21�, pp. 3217–3228.

�15� Elishakoff, I., 2000, “A Closed-Form Solution for the Generalized Euler Prob-
lem,” Proc. R. Soc. London, Ser. A, 456, pp. 2409–2417.

�16� Elishakoff, I., 2001, “Inverse Buckling Problem for Inhomogeneous Col-
umns,” Int. J. Solids Struct., 38, pp. 457–464

�17� Elishakoff, I., 2001, “Euler’s Problem Revisited: 222 Years Later,” Meccanica,
36, pp. 265–272.

�18� Elishakoff, I., and Guédé, Z., 2001, “Novel Closed-Form Solutions in Buck-
ling of Inhomogeneous Columns Under Distributed Variable Loading,” Chaos,
Solitons Fractals, 12, pp. 1075–1089.

�19� Elishakoff, I., 2005, Eigenvalues of Inhomogeneous Structures, CRC, Boca
Raton, FL.

�20� Kamke, E., 1972, Differentialgleichungen, Lö sungsmethoden und Lö sungen,
Chelsea, New York.

Journal of Applied Mechanics JULY 2009, Vol. 76 / 041015-9

Downloaded 04 May 2010 to 171.66.16.44. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



Xiaohong Chen
Sikorsky Aircraft Corporation,

6900 Main Street,
P.O. Box 9729,

Stratford, CT 06615-9129

Nonlinear Field Theory of
Fracture Mechanics for
Paramagnetic and Ferromagnetic
Materials
A nonlinear field theory of fracture mechanics is developed for crack propagation in
paramagnetic and ferromagnetic materials from the global energy balance equation and

the non-negative global dissipation requirement. The crack-front generalized J̃-integral is
equivalent to the generalized energy release rate serving as the thermodynamic driving
force for crack propagation and also related to the generalized energy-momentum tensor
in a way similar to the material force method. On the basis of the developed theory, the

generalized energy release rate method, the generalized J̃-integral method, and the ex-
tended essential work of fracture method are proposed for quasistatic and dynamic frac-
ture characterization of magnetosensitive materials in the presence of magnetothermo-
mechanical coupling and dissipative effects. The present work overcomes the drawbacks
and limitations of conventional fracture mechanics and resolves the controversial issues

on magnetoelastic fracture criterion. Especially, the crack-front generalized J̃-integral
has an odd dependence on the magnetic induction intensity factor for a Griffith-type
crack in a magnetoelastic solid. �DOI: 10.1115/1.3086784�

1 Introduction
With the wide applications of materials consisting of piezoelec-

tric and piezomagnetic components, particularly in smart struc-
tures and devices, growing interests have been developed on
magneto-electro-elastic fracture mechanics �1–33�. Fracture crite-
ria for these intelligent materials are of vital importance for reli-
ability assessment of structural integrity. Shindo �1,2� first studied
the distribution of mechanical and magnetic fields in an infinite
body with a planar or penny-shaped crack following a linear
theory for soft ferromagnetic elastic materials. Path-independent
integrals have been employed to study defected bodies since the
pioneering work of Eshelby �34–36�. Based on the rotationally
invariant quasimagnetostatic theory of elastic paramagnets and
soft ferromagnets, Sabir and Maugin �3� constructed the path-
independent integrals with the magnetic enthalpy and yielded the
same results as the canonical field-theoretic approach using the
notions of Eshelby stress and material forces �5�. Their studies
indicate that the magnetic field has a negative contribution to the
energy release rate so that its presence is beneficial from the point
of view of fracture toughness. Such a conclusion may be doubtful
since a similar prediction based on the path-independent integral
constructed with the electric enthalpy �7–13� has been shown con-
tradictory to experimental observation on crack growth in piezo-
electric materials �14–19�.

Many attempts, e.g., Refs. �20–25�, have been made to resolve
this controversy. However, as pointed out by McMeeking �24�, the
major difficulty with this subject is that the theoretical treatments
are all incomplete, and some of the theoretical treatments also
introduce features that are hard to justify. On the other hand,
thermodynamics/thermomechanics has been used to study ther-
moelasticity, magneto-electro-elasticity, viscoelasticity, plasticity,
and fracture �37–43�. Most recently, Chen �44� proposed a new
formation of the energy flux integral and the energy-momentum

tensor for studying the crack driving force in electroelastodynamic
fracture and showed that the dynamic energy release rate thus
obtained has an odd dependence on the electric displacement in-
tensity factor, which is in agreement with experimental evidence.
Chen �45� further developed a nonlinear field theory of fracture
mechanics for piezoelectric and ferroelectric materials based on
fundamental principles of thermodynamics.

The objective of the present work is to develop a consistent
thermodynamic formulation of a nonlinear field theory of fracture
mechanics for paramagnetic and ferromagnetic materials from the
global energy balance equation and the non-negative global dissi-
pation requirement. In Sec. 2, crack propagation in the presence of
magnetothermomechanical coupling and dissipative effects is de-
termined in terms of the generalized energy release rate as the
thermodynamic driving force conjugate to the crack variable. In
Sec. 3, on the basis of the developed theory, the generalized en-

ergy release rate method, the generalized J̃-integral method, and
the extended essential work of fracture �EWF� method are pro-
posed for quasistatic and dynamic fracture characterization of
magnetosensitive materials, and the inter-relation of these meth-
ods and their correlation with conventional methods are explored.
In Sec. 4, a Griffith-type magnetoelastic crack problem is investi-
gated as a case study. In Sec. 5, some important features of this
formulation for an in-depth understanding of the magnetoelastic
fracture behavior are discussed. In the end, the concluding re-
marks are given.

2 Thermodynamic Formulation
Continuum mechanics of electromagnetic solids has been pre-

sented in the monographs by Eringen �39� and Maugin �40� with
Maxwell equations, mass balance equation, linear momentum bal-
ance equation, angular momentum balance equation, and energy
balance equation in global and local forms. The following theo-
retical framework is developed for a cracked body under com-
bined magnetic, thermal, and mechanical loadings involving dis-
sipative mechanisms.

Contributed by the Applied Mechanics Division of ASME for publication in the
JOURNAL OF APPLIED MECHANICS. Manuscript received June 28, 2008; final manuscript
received December 22, 2008; published online April 28, 2009. Review conducted by
Zhigang Suo.
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2.1 Maxwell Equations. The magnetic field H is introduced
by

H =
1

�0
B − M �1�

where �0 is the vacuum permeability, B is the magnetic induction,
and M is the magnetization.

The Maxwell equations in the absence of electric effect are
simplified as

� · B = 0 �2�

� � H = 0 �3�

�B

�t
= 0 �4�

2.2 Mass Balance. Following the conservation law of mass,
the global mass balance equation over a cracked body Vt bounded
by the material surface �Vt is given by

d

dt�
Vt

�dV = 0 �5�

where � is the mass density.
Hence, the local mass balance equation is obtained as

d�

dt
= − � � · v �6�

where v= u̇ is the velocity vector and u is the displacement vector.

2.3 Linear and Angular Momentum Balance. Following
the conservation law of linear momentum, the global linear mo-
mentum balance equation over the cracked body Vt is given by

d

dt�
Vt

�vdV =�
�Vt

t�n�dS +�
Vt

��f̂ + mf�dV �7�

where t�n�=n ·� is the mechanical traction acting on the surface

�Vt, � is the Cauchy stress tensor, f̂ is the mechanical body force
per unit mass, and mf= ��B� ·M is the magnetic body force per
unit volume.

Hence, the local linear momentum balance equation is obtained
as

�
dv

dt
= � · � + �f̂ + mf �8�

Following the conservation law of angular momentum, the glo-
bal angular momentum balance equation over the cracked body Vt
is given by

d

dt�
Vt

r � �vdV =�
�Vt

�r � t�n��dS +�
Vt

�r � �f̂ + r � mf̂ + mc�dV

�9�

where r is the position vector from the fixed point O, and mc
=M�B.

Hence, the local angular momentum balance leads to

�kij�ij + mck = 0 �10�

With the use of the second-order tensor m�, Eqs. �8� and �10�
can be rewritten as

�
dv

dt
= � · �� + m�� + �f̂ �11�

�kij��ij + m�ij� = 0 �12�

where m�=−B � M+ �1 /�0�B � B+ �M ·B− muf�I is the magnetic
stress and muf = �1 /2�0�B ·B is the energy density of the free mag-
netic field.

2.4 Energy Balance. Following the conservation law of en-
ergy, the global energy balance equation over the cracked body Vt
is given by

dE

dt
+

dK

dt
= Ẇ + Q̇ �13�

where E is the internal energy, K is the kinetic energy, Ẇ is the

power by external forces, and Q̇ is the heat exchange rate.
The internal energy E and the kinetic energy K over the cracked

body Vt are defined as

E ��
Vt

�êdV �14�

K ��
Vt

�k̂dV �15�

where ê is the internal energy per unit mass and k̂ is the kinetic
energy per unit mass.

The power by external forces is given by

Ẇ =�
�Vt

t�n� · vdS +�
Vt

�f̂ · vdV +�
Vt

mwdV �16�

where mw= mf ·v−M · Ḃ is the magnetic power per unit volume.
The heat flux jq is introduced to describe the heat exchange rate

through the boundary �Vt as

Q̇ = −�
�Vt

n · jqdS �17�

Hence, the global energy balance equation over the cracked
body Vt becomes

d

dt�
Vt

��k̂ + ê�dV = −�
Vt

� · jqdV +�
Vt

�� · � + �f̂ + mf̂� · vdV

+�
Vt

�:v � dV −�
Vt

M · ḂdV �18�

2.5 Helmholtz Free Energy. The Helmholtz free energy per
unit mass is defined as

ĥ � ê − Tŝ �19�

where T is the absolute temperature and ŝ is the entropy per unit
mass.

Substituting Eq. �19� into Eq. �18� yields

�
Vt

�T
dŝ

dt
dV = −�

Vt

� · jqdV +�
Vt

�� · � + �f̂ + mf̂� · vdV

+�
Vt

��:v � − M · Ḃ − �ŝṪ�dV −
d

dt�
Vt

��k̂ + ĥ�dV

�20�

2.6 Non-Negative Global Dissipation Requirement. The en-
tropy production is defined as

diŝ

dt
�

dŝ

dt
+

1

�
� · js �21�
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where js is the entropy flux.
The non-negative global dissipation requirement is given by

�
Vt

�T
diŝ

dt
dV � 0 �22�

2.7 State Equations. Substituting Eqs. �20� and �21� into Eq.
�22� with the use of Eq. �8� yields

�
Vt

�T
diŝ

dt
dV = −�

�Vt

n · �jq − Tjs�dS −�
Vt

js · �TdV

+�
Vt

�v̇ · vdV +
1

2�
Vt

J−1
t�:ĊdV +�

Vt

J−1Ĥ · Ḃ̂dV

−�
Vt

�ŝṪdV −
d

dt�
Vt

��k̂ + ĥ + muf

�
�dV � 0 �23�

where t�=JF−1
t�F−T is the second Piola–Kirchhoff total stress

tensor, t�=�+ m� is symmetric, C=FTF is the right Cauchy–

Green deformation tensor, Ĥ=H ·F, B̂=JF−1 ·B, J=det�F�, F
=�x /�X is the deformation gradient, X is the position in the ref-
erence configuration, x=��X , t� is the position in the current con-
figuration, and u=x−X.

In the reference configuration VR with respect to which the
deformation gradient F is measured, the Helmholtz free energy
including the contribution of the energy of the free magnetic field,

h̃= ĥ+ muf /�, is taken to be a functional of the histories of defor-
mation, temperature, temperature gradient, and magnetic induc-
tion, with the crack parameter, A, as an internal state variable:

h̃ = h̃�C�t − ��,T�t − ��,�RT�t − ��,B̂�t − ��;A,X� �24�
The Hamiltonian density is given by

H�v,C�t − ��,T�t − ��,�RT�t − ��,B̂�t − ��;A,X�

= k̂�v;A,X� + h̃�C�t − ��,T�t − ��,�RT�t − ��,B̂�t − ��;A,X�
�25�

In order for the non-negative global dissipation requirement
inequality �23� to be always valid, it is necessary and sufficient
that state equations fulfill the following conditions:

�h̃

�T,K
= 0 �26�

t	KL = 2�0
�h̃

�CKL
�27�

ĤK = �0
�h̃

�B̂K

�28�

ŝ = −
�h̃

�T
�29�

jq = Tjs �30�

�
Vt

�T
diŝ

dt
dV =�

Vt

Tjq · �
1

T
dV +�

Vt

�
̂dV + G̃Ȧ � 0 �31�

where the thermodynamic force, G̃, the conjugate to the crack

variable, A, and the time-dependent dissipation rate, 
̂, are given
by

G̃ = −
�

�A�
Vt

�HdV �32�


̂ = −
� h̃

�t
�33�

From Eq. �26�, the Helmholtz free energy functional does not
depend on the temperature gradient. From Eq. �31�, the total dis-
sipation is associated with heat conduction, relaxation/retardation,
and crack propagation. Since inequality �31� should always be
satisfied, kinetic laws for specific irreversible processes can be
determined accordingly.

2.8 Coupled Heat Transfer Equation. Thermodynamic flux
for heat conduction is postulated to depend linearly on corre-
sponding thermodynamic force, that is,

jq = Lqq · �
1

T
�34�

where Lqq is positive definite.
Substituting Eqs. �21�, �29�, �30�, and �34� into Eq. �31� yields

the coupled heat transfer equation for the cracked body,

−�
Vt

�T
�h̃

�T
dV = −�

Vt

� · �Lqq · �
1

T
�dV +�

Vt

�
̂dV + G̃Ȧ

�35�

2.9 Time-Dependent Dissipation Rate Inequality. The
time-dependent dissipation rate satisfies the following inequality:


̂ � 0 �36�

2.10 Thermodynamic Consistent Time-Dependent Frac-

ture Criterion. In terms of the generalized energy release rate, G̃,
as the thermodynamic driving force conjugate to the crack vari-
able, A, crack propagation in coupled magnetic, thermal, and me-
chanical fields is determined by

G̃ − R = 0 �37�

where R is the crack resistance.
Substituting Eqs. �14�, �17�, �19�, �21�, �30�, and �31� into the

global energy balance equation �13� yields

Ẇ =
d

dt�
Vt

�ĥdV +
d

dt�
Vt

�k̂dV +�
Vt

�ŝṪdV +�
Vt

�
̂dV + G̃Ȧ

�38�
For stable crack growth, substituting Eq. �37� into Eq. �38�

yields

Ẇ =
dH

dt
+

dK

dt
+�

Vt

�ŝṪdV +�
Vt

�
̂dV + RȦ �39�

where H�	Vt
�ĥdV. Integrating Eq. �39� over the time domain

gives the following expression for the total work:

�W = �H + �K +�
t0

t �
Vt

�ŝṪdVdt +�
t0

t �
Vt

�
̂dVdt +�
t0

t

RȦdt

�40�

With the use of the Poynting vector S= �v�B��H, Eq. �16�
leads to
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Ẇ =�
�Vt

n · �� + m�� · vdS +�
Vt

�f̂ · vdV −�
�Vt

n · SdS

−
d

dt�
Vt

mufdV �41�

Substituting Eq. �41� into Eq. �38� yields

�
�Vt

n · �� + m�� · vdS −�
�Vt

n · SdS =
d

dt�
Vt

��h̃ + k̂�dV

−�
Vt

�f̂ · vdV +�
Vt

�ŝṪdV +�
Vt

�
̂dV + G̃Ȧ �42�

Consider a three-dimensional cracked body Ṽt bounded by a

surface �̃ in a reference frame �X̃=X−ct� traveling with the crack
front at a speed c. Equation �42� can be rewritten as

F��̃� � �
�̃

�n · �� + m�� · v − n · S + ��̃h̃ + �̃k̂�n · c�d�̃

=�
Ṽt

�̃

�̃t
��̃h̃ + �̃k̂�dṼ −�

Ṽt

�̃f̂ · vdṼ +�
Ṽt

�̃ŝṪdṼ +�
Ṽt

�̃
̂dṼ

+ G̃Ȧ �43�
The above expression represents the total energy flux through

the surface �̃. It is noted that the global energy balance for the
existence of a moving discontinuous line/surface in a material
surface/volume �39,40� may lead to a similar expression, but it has
not been used to study crack problems.

As the surface �̃→0, the energy flux integral is related to the
generalized energy release rate by

lim
�̃→0


F��̃�
Bc

� = lim
�̃→0

 1

Bc�
�̃

�n · �� + m�� · v − n · S

+ ��̃h̃ + �̃k̂�n · c�d�̃� = G̃ �44�

where c= �c� is the crack velocity and B is the thickness along the
crack front.

3 Application to Fracture Characterization

3.1 Generalized Energy Release Rate Method. The gener-
alized energy release rate criterion given by Eq. �37� is a gener-
alization of the Griffith–Irwin strain energy release rate criterion
�46�. The time-dependent fracture criterion given by Eq. �39� is a
generalization of the rate-dependent criterion for viscoelastic

crack growth �47�. The generalized energy release rate, G̃, and the

time-dependent dissipation rate, 
̂, can be calculated from Eqs.
�32� and �33�.

3.2 Generalized J̃-Integral Method. The generalized

J̃-integral is defined as

J̃�̃ �
F��̃�
Bc

�45�

From Eq. �44�, the crack-front generalized J̃-integral is the en-
ergy flux toward the crack-front per unit crack advance, which is
equivalent to the generalized energy release rate, that is,

J̃0 = lim
�̃→0


F��̃�
Bc

� = G̃ �46�

The relation between the global and local generalized

J̃-integrals is obtained from Eq. �43� as

J̃g = J̃l +
1

Bc�
Ṽg−Ṽl

�̃

�̃t
��̃h̃ + �̃k̂�dṼ −

1

Bc�
Ṽg−Ṽl

�̃f̂ · vdṼ

+
1

Bc�
Ṽg−Ṽl

�̃ŝṪdṼ +
1

Bc�
Ṽg−Ṽl

�̃
̂dṼ �47�

where Ṽg and Ṽl are the volumes bounded by the closed surfaces

�̃g and �̃l including crack faces.

Hence, the generalized J̃-integral is a generalization of the con-
ventional J-integral and dynamic contour integral �46,48� and
Schapery’s �49� crack-tip model for viscoelastic fracture. For
steady-state crack propagation in the absence of mechanical body

force �f̂=0�, thermal effect �Ṫ=0�, and time-dependent dissipation

�
̂=0�, the generalized J̃-integral becomes path independent as
the closed surface is chosen in the present work.

For a flat, straight through-crack, if a field quantity is invariant
in a reference frame traveling with the crack front in the
ẽ1-direction at a speed c=cẽ1, the field quantity depends on t only

through the combination X̃=X−ct. The energy flux integral �44�
takes the special form

F��̃� =�
�̃

n · �− �� + m�� · u�̃ + B � H · u�̃ − �H · B�u�̃

+ ��̃h̃ + �̃k̂�I� · cd�̃ �48�
With the introduction of the generalized energy-momentum ten-

sor,

b̃ � − �� + m�� · u�̃ + B � H · u�̃ − �H · B�u�̃ + ��̃h̃ + �̃k̂�I
�49�

the generalized J̃-integral for steady-state crack propagation can
be expressed as

J̃�̃ =
1

B�
�̃

n · b̃d�̃ · ẽ1 = J̃�̃ · ẽ1 �50�

where J̃�̃= �1 /B�	�̃n · b̃d�̃ is the configuration force on
singularity.

Hence, the generalized J̃-integral is related to the generalized
energy-momentum tensor in a way similar to that given in Refs.

�3–6�. Nevertheless, the generalized J̃-integral and the generalized
energy-momentum tensor constructed with the use of the Helm-
holtz free energy in this formulation are different from those
yielded with the use of the magnetic enthalpy �3,4�.

3.3 Extended Essential Work of Fracture Method. From
Eq. �40�, the total work, Wf, from the start of loading until the
final fracture can be partitioned into the essential work of fracture,
We, and the nonessential work of fracture, Wne, as

Wf = We + Wne �51�

We ��
t0

tf

weȦdt =�
t0

tf

RȦdt �52�

Wne = �K +�
t0

tf �
Vt

�ŝṪdVdt +�
t0

tf �
Vt

�
̂dVdt �53�

where we is the specific essential work of fracture.
The specific essential work of fracture is geometry independent

due to its equivalence to crack resistance, and the nonessential
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work of fracture is geometric dependent due to its association with
kinetic energy change, thermal effect, and time-dependent dissi-
pation. Hence, this formulation provides a fundamental basis for
extending the EWF method, developed by Cotterell, Reddel, Mai,
and co-workers �50–52� from the unified theory of fracture by
Broberg �53,54�, to fracture characterization of magnetosensitive
materials involving dynamic, thermal, and hysteresis effects.

It turns out that the generalized energy release rate method, the

generalized J̃-integral method, and the extended essential work of
fracture method should give consistent results, irrespective of ma-
terial systems, loading, and environmental conditions. The critical

generalized energy release rate, G̃c, the critical crack-front gener-

alized J̃-integral, J̃c, and the specific essential work of fracture,
we, are equivalent as a measure of crack resistance.

4 Griffith-Type Magnetoelastic Crack Problem

4.1 Basic Field Equations. For a quasistatic crack problem in

the absence of mechanical body force �f̂=0�, Eq. �11� becomes

� · �� + m�� = 0 �54�
With the use of Eqs. �2�–�4� and �54�, general solutions exist for

the magnetic induction B and the total stress t�=�+ m� with
inverse square root singularity at the crack tip as the total stress
tensor t� is used instead of the Cauchy stress tensor � for crack
problems in magnetoelastic solids �28–32�.

4.2 Path-Independent Integral. With the use of �n�H�
�B= �n ·B�H− �H ·B�n, expression �50� can be rewritten as

J̃�̃ = −
1

B�
�̃

n · �� + m�� · u�̃ · ẽ1d�̃

+
1

B�
�̃

��n � H� � B� · u�̃ · ẽ1d�̃ +
1

B�
�̃

��̃h̃ + �̃k̂�n · ẽ1d�̃

�55�
From Eq. �47�, due to the path independence of the generalized

J̃-integral for steady-state crack propagation in the absence of me-
chanical body force, thermal effect, and time-dependent dissipa-

tion, the global and local generalized J̃-integrals have the same
value as the closed contours are chosen, that is,

J̃g = J̃l = J̃0 = G̃ �56�

4.3 Griffith-Type Crack. Consider a Griffith-type crack in a
magnetoelastic solid with the reference coordinate system affixed
to the crack tip, as shown in Fig. 1. A generalized plane crack
problem deals with a mathematical slit crack or an elliptical cyl-

inder cavitylike crack under coupled magnetomechanical bound-
ary conditions. For simplicity, the remote loads considered here
are �2j


 + m�2j

 and B2


.
For an elliptical inclusion problem, the jump conditions across

the interface are given by

n · ��� + m��� = 0, ��u�� = 0 �57�

n · ��B�� = 0, n � ��H�� = 0 �58�

where ��¯�� represents the jump of the field quantity inside the
double square brackets across the interface.

For a slit crack problem, the crack surface boundary conditions
may generally be written as

n+ · �� + m��+ = − n− · �� + m��−

= − 
�21
0 + m�21

0 ,�22
0 + m�22

0 ,�23
0 + m�23

0 �T �59�

n+ · B+ = − n− · B− = − B2
0 �60�

The total traction should be considered in the coupled magne-
tomechanical boundary conditions along the crack faces and the
remainder surface of the solid. For an elliptical inclusion problem,
Eqs. �57� and �58� are exact, but the corresponding boundary
value problem needs to be solved in both the solid region and the
cavity region �28,29�. For a slit crack problem, B2

0 in Eq. �60� is
either prescribed under magnetically impermeable crack face con-
dition or determined through solving the boundary value problem
with magnetically permeable or semipermeable crack face condi-
tion �30–33�.

Choose the contour as shown in Fig. 1. This is a convenient

choice because n1=0 along the segments parallel to the X̃1-axis.
The contour is shrunk onto the crack tip by first letting �2→0 and
then �1→0. In analogy to the purely elastodynamic case �48�,
there is no contribution to J̃0 from the segments parallel to the

X̃2-axis and the segments along crack faces. Moreover, the second
term on the right side of Eq. �55� along the segments parallel to

the X̃1-axis vanishes. Consequently, J̃0 can be computed by evalu-
ating only the first term on the right side of Eq. �55� along the

segments parallel to the X̃1-axis, that is,

J̃0 = 2 lim
�1→0

�
−�1

�1

��2j�X̃1,0� + m�2j�X̃1,0��
�uj�X̃1,0+�

�X̃1

dX̃1

�61�

Hence, the crack-front generalized J̃-integral is equal to the fol-
lowing crack closure integral,

J̃0 = lim
�a→0

1

2�a�0

�a

��2j�X̃1,0� + m�2j�X̃1,0���uj�X̃1 − �a,0��dX̃1

�62�

where �uj�X̃1−�a ,0��=uj�X̃1−�a ,0+�−uj�X̃1−�a ,0−�.
From the near-tip field solutions for magnetoelastic crack prob-

lems �28–32� with the replacement of the Cauchy stress tensor by

the total stress tensor, the crack-front generalized J̃-integral is cal-
culated as

J̃0 = 1
4 �KII,KI,KIII,0��H��KII,KI,KIII,KB�T �63�

where KI=��a���22

 + m�22


 �− ��22
0 + m�22

0 ��, KII=��a���21



+ m�21

 �− ��21

0 + m�21
0 ��, and KIII=��a���23


 + m�23

 �− ��23

0 + m�23
0 ��

are Modes I, II, and III total stress intensity factors, KB

=��a�B2

−B2

0� is the magnetic induction intensity factor, and �H�
is the Irwin matrix.

Fig. 1 A Griffith-type crack in a magnetoelastic solid
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For the Mode III elliptical cavitylike crack problem by reducing
the cavity to a magnetically impermeable, permeable, or semiper-

meable crack �29�, the crack-front generalized J̃-integral becomes

J̃0 = 1
4 �0,0,KIII,0��H��0,0,KIII,KB�T �64�

For the Mode I slit crack problem with magnetically imperme-
able, permeable, or semipermeable crack face condition �32�, the

crack-front generalized J̃-integral becomes

J̃0 = 1
4 �0,KI,0,0��H��0,KI,0,KB�T �65�

The effects of purely applied magnetic field on a magnetically
permeable crack in a soft ferromagnetic solid have recently been
studied by Gao et al. �33� with inclusion of the Maxwell stresses
in the boundary conditions not only on the crack faces but also at
infinity. It is found that all the field variables in the solid are
uniform, which means that there is no crack-tip field singularity
when a mathematical slit crack is dealt with in this case.

5 Discussion
The first feature of this formulation is that Eq. �56� shows that

the generalized J̃-integral is path independent for steady-state
crack propagation in the absence of mechanical body force, ther-
mal effect, and time-dependent dissipation so that fracture criteria

based on the global generalized J̃-integral and the local general-

ized J̃-integral are identical for such crack problems as the closed
contours are chosen.

The second feature of this formulation is that Eq. �62� shows

that the crack-front generalized J̃-integral is equal to the mechani-
cal part of the crack closure integral with the replacement of the
Cauchy stress tensor by the total stress tensor, which is analogous
to the semi-empirical fracture criterion proposed by Park and Sun
�18,19� for piezoelectric materials. Nevertheless, the difference
lies in the replacement of the Cauchy stress tensor by the total
stress tensor and the equivalence of the crack-front generalized

J̃-integral to the generalized energy release rate instead of the
mechanical strain energy release rate.

The third feature of this formulation is that Eq. �63� shows that

the crack-front generalized J̃-integral is an odd function of the
magnetic induction intensity factor, which is consistent with ex-
perimental observation on crack growth in piezoelectric materials
�14–19�.

The fourth feature of this formulation is that Eq. �63� indicates
that the coupled magnetomechanical boundary conditions affect
crack propagation through changing the field intensity factors,
which involves the opening and bridging of the crack.

The fifth feature of this formulation is that Eq. �63� indicates
that the contribution of pure magnetic loading to the crack driving
force through the total stress and magnetic induction intensity
factors depends on the adopted crack face condition. As remarked
by Gao et al. �33�, a conclusion must await further experimental
data.

The sixth feature of this formulation is that Eq. �63� implies that
the magnetic induction intensity factor has no contribution to the
crack driving force in the absence of piezomagnetic effect, but the
magnetic stress may still play a role in crack propagation through
the total stress intensity factors.

6 Concluding Remarks
Based on fundamental principles of thermodynamics, a nonlin-

ear field theory of fracture mechanics is developed for crack
propagation in the presence of magnetothermomechanical cou-
pling and dissipative effects. Through rigorous derivation, this
formulation successfully captures the crack-tip singularity of
coupled fields, offers the right expression for the crack driving
force, and yields the generally applicable fracture criterion for
both conservative and dissipative magnetosensitive materials. The

developed theory lays a foundation for the application of the gen-

eralized energy release rate method, the generalized J̃-integral
method, and the extended essential work of fracture method to
quasistatic and dynamic fracture characterization of paramagnetic
and ferromagnetic materials. The present work can also be ex-
tended to include gradient effects in thin films and microelectro-
mechanical systems �MEMS�.
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Analytical expressions are derived for the vibration and far-field
acoustic radiation from a fluid-loaded laminated composite plate,
which is excited by three types of mechanical drives: point, line,
and uniformly distributed forces in longitudinal and transverse
directions. Through numerical results, it is shown that the lami-
nation schemes of the laminated composite plate play an impor-
tant role in its far-field acoustic radiation, especially when the
plies of the plate are asymmetric with its middle plane. This paper
would help better understand the main mechanism of acoustic
radiation from laminated composite plates, which has not been
adequately addressed in its companion paper (Yin, et al., 2007,
“Acoustic Radiation From a Laminated Composite Plate Rein-
forced by Doubly Periodic Parallel Stiffeners,” J. Sound Vibrat.,
306, pp. 877–889). �DOI: 10.1115/1.3086429�

1 Introduction
It is well known that a vibrating plate may exhibit three types of

modes �or waves� �1–8�, namely, longitudinal, shear, and bending.
Of these three modes, bending is referred to as out-of-plane mo-
tion, and longitudinal and shear, when grouped together, as in-
plane motions. In general, the bending motions of the plate can be
sufficiently described by its transverse displacement, while the
longitudinal �or extensional� and shear motions can be usually
described by two in-plane displacement components.

In the past few decades, in contrast to the in-plane motions of
plates, more attention was paid to the bending vibration �3–7�, not
only because the bending is prone to excitation from external
sources but also because such motion can interact strongly with
the surrounding acoustic medium. In plate bending theories, the
classical Kirchhoff–Love assumptions are often employed, from
which the plate suffers no extension in its middle plane as well as
in the transverse direction. This has the consequence that the
structural response to a driving force normal to the plate is solely
determined by the bending wave equation and there is no coupling
to the in-plane vibrations. In most of the publications, acoustic
radiation from a uniform plate is mainly attributed to its bending
motions, and hence the corresponding transverse displacement is
considered to be the unique displacement component that makes
contribution to the induced acoustic radiation.

However, in engineering applications, plates are usually joined
together through various types of connections. In this case, the
above mentioned three types of motions may be converted into
each other �8�. So the prediction of the in-plane vibrations of the
plates is also of practical importance in the sense of motion �or
wave� conversion.

Moreover, with the knowledge of plate theory, there is one ac-
knowledged concept governing the coupling between the in-plane
and out-of-plane vibrations. For thin plates �4�, whose rotatory
inertia and shear deformations are assumed to be ignored, their
bending motions are decoupled from extensional and shear mo-
tions, while for moderately thick or even thicker plates, their dis-
placements are fairly coupled, e.g., through Poisson’s ratio and the
corrected shear modulus. In this case, only thick plate theories �8�
or even more accurate three dimensional elastic theories can work
well.

With the increasingly extensive use of laminated composite ma-
terials, the dynamics of plates made of such materials is more
complex than that of uniform plates �9�. In the classical laminated
plate theory �CLPT� �10–13�, the laminates are also assumed to be
transversely inextensible; nevertheless, their transverse and in-
plane displacements are coupled through the extension-bending
coupling stiffnesses Bij �see Appendix A in Ref. �14�� in a math-
ematical sense. For instance, for an asymmetric laminate whose
ply stacking sequence, material, and geometry �i.e., ply thickness�
are not symmetric with its middle plane, its extension and bending
may be coupled not only through coupling stiffnesses but also
through Poisson’s effects. In particular, for a symmetric laminate,
its extension-bending coupling stiffnesses become zero, that is,
the extension and bending vibrations are decoupled from each
other �if Poisson’s effects are of insignifance, e.g., the plates are
thin enough�. Many articles �9,14� are concentrated in the problem
of acoustic radiation from a composite laminated plate mainly due
to transverse vibration, and little attention is paid to the effects of
in-plane motions on the overall vibration and the acoustic radia-
tion.

Particularly, in our previous work �14�, when the composite
laminated plates are driven by a harmonic transverse point force,
there is almost no difference between the sound pressure levels
from the symmetric and antisymmetric laminates, the reason for
which was not addressed. In this paper, the work in Ref. �14� is
extended to develop solutions to the vibration and acoustic radia-
tion from a laminated composite plate, which is driven by point,
line, and uniformly distributed forces in longitudinal and trans-
verse directions. Through theoretical expressions and numerical
results, we try to give a further discussion on the underlying
mechanism of sound radiation from composite laminated plates
driven by different types of mechanical loadings in different di-
rections.

2 Theoretical Sketch
Consider an infinite laminated composite plate composed of N

orthotropic layers, the mth one of which has principal material
coordinates �x�m� ,y�m� ,z�m�� oriented along a vector with an angle
��m� to the global laminate coordinate, x, as shown in Fig. 1. An
acoustic fluid occupies the half-space z�0, which interacts with
the plate at the interface between them. Since the thickness of the
plate is very small compared with its other two dimensions, the
fluid-plate interface is considered to be lying on the plane z=0
without loss of accuracy. Three types of forces are applied at the
plate in its middle plane, namely, point forces Fk, line forces Nk,
and uniformly distributed forces pvk, where the lower index k
denotes the x-, y-, and z-component of the quantities correspond-
ing to k=1,2 ,3, respectively. For problems of harmonic vibration,
all of the loadings have a time dependence ei�t, where � is the
circular frequency, and ei�t will henceforth be suppressed
throughout.
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The classical laminated plate theory is employed to describe the
motions of a fluid-loaded laminated composite plate in a concise
matrix form �13,14�:

�L11 L12 L13

L21 L22 L23

L31 L32 L33
��u0

v0

w
� = �− F1 − N1 − pv1�x,y�

− F2 − N2 − pv2�x,y�
�F3 + N3 + pv3�x,y� − pa�x,y,0��

�
�1�

where Lkl �k=1,2 ,3; l=1,2 ,3� are differential operators for a thin
laminated composite plate, whose detailed expressions were given
in Appendix A of Ref. �14�. u0 and v0 are the in-plane displace-
ments in the plate’s middle plane, and w is the transverse displace-
ment of the plate. It is generally noted that pa�x ,y ,z� is the acous-
tic pressure in the fluid; in particular, pa�x ,y ,0� is the reactive
pressure acting on the plate.

In the governing equation �1�, the external point forces acting at
�xk ,yk� are defined as follows �4�:

Fk = Qk��x − xk���y − yk� �k = 1,2,3� �2a�

and the line forces at x=xk are

Nk = Tk��x − xk� �k = 1,2,3� �2b�

where ��·� is the Dirac delta function.
Similarly, uniformly distributed forces, which act on a rectangle

with dimension of 2Lx�2Ly along the x-, y- and z-directions,
respectively, are expressed as follows:

pvk�x,y� = QvkH�Lx − 	x − xvk	�H�Ly − 	y − yvk	� �k = 1,2,3�
�2c�

where H�·� denotes the Heaviside function. The center of the rect-
angle is located at �xvk ,yvk� �k=1,2 ,3�.

Taking the Fourier transform of Eq. �1� by the following trans-
form pair

w̃��,�� =

−�

+�

−�

+�

w�x,y�ei��x+�y�dxdy �3a�

w�x,y� =
1

4	2

−�

+�

−�

+�

w̃��,��e−i��x+�y�d�d� �3b�

yields

�L̃11 L̃12 L̃13

L̃21 L̃22 L̃23

L̃31 L̃32 L̃33

��ũ0

ṽ0

w̃
� = �− F̃1 − Ñ1 − p̃v1

− F̃2 − Ñ2 − p̃v2

F̃3 + Ñ3 + p̃v3 − p̃a

� �4�

where L̃kl�k=1,2 ,3; l=1,2 ,3� are the transformed algebraic op-
erators for a thin laminated composite plate, which were given in
Appendix B of Ref. �14�.

2.1 The Transformed External Forces. The transformed
point forces in Eq. �4� are also readily written as follows:

F̃k = Qie
i��xk+�yk� �k = 1,2,3� �5a�

Similarly, the transformed line forces in Eq. �4� are

Ñk = Tke
i�xk �k = 1,2,3� �5b�

and the transformed surface loadings in Eq. �4� are also given as
follows:

p̃vk��,�� = 4Qvk sin��Lx�sin��Ly�/���� �k = 1,2,3� �5c�

2.2 The Transformed Fluid Loading. In Cartesian coordi-
nates, the acoustic pressure in the half-infinite space above z�0
satisfies the Helmholtz equation

� �2

�x2 +
�2

�y2 +
�2

�z2�pa + ��2

c0
2 �pa = 0 �6�

where c0 is the speed of sound in the fluid. The coupling between
the plate and the fluid satisfies the momentum equation in z axis


 �pa

�z



z=0

= �2
0w �7�

where 
0 is the density of the fluid. Taking the Fourier transform
of Eqs. �6� and �7� yields

p̃a��,�,0� = − �2
0w̃��,��/���,�� �8�
where

�2 = �2 + �2 − �2/c0
2 �9�

and � is to be evaluated such that Re����0, Im����0 if Re���
=0, in order that the radiation conditions for outgoing waves are
met.

3 Solution of the Transformed Equations
Substituting Eq. �8� into Eq. �4� and gathering up the terms

involving the transformed transverse displacement w̃ lead to

�L̃11 L̃12 L̃13

L̃21 L̃22 L̃23

L̃31 L̃32 L̃33 − �2
0/�
��ũ0

ṽ0

w̃
� = �− F̃1 − Ñ1 − p̃v1

− F̃2 − Ñ2 − p̃v2

F̃3 + Ñ3 + p̃v3

� �10�

By solving Eq. �10�, the transformed transverse displacement
w̃�� ,�� is

w̃��,�� = �− �F̃1 + Ñ1 + p̃v1�A13 − �F̃2 + Ñ2 + p̃v2�A23 + �F̃3 + Ñ3

+ p̃v3�A33�
−1 �11�

where the dispersion denominator 
 is the determinant of the 3
�3 matrix on the left-hand side of Eq. �10�. To save writing, we
introduce three elements, i.e., A13, A23, and A33, which were listed
in Appendix C of Ref. �14�. The plate’s lamination schemes, i.e.,
material, geometry, and ply stacking sequence are also found im-
plicit in the four factors.

The far-field acoustic radiation in spherical coordinates
�R ,� ,�� can be given with the application of one standard proce-
dure, i.e., stationary phase approximation

P�R,�,�� = − 
0�2w̃��0,�0�e−ik0R/2	R �12�
where the stationary point is defined as follows:

�0 = ��/c0�sin � cos �, �0 = ��/c0�sin � sin � �13�

and R is the distance from the field point to the origin. It is clear
from Eq. �12� that the far-field pressure at an observation point
�R ,� ,�� only involves contribution from transformed displace-
ment at a single wavenumber pair ��0 ,�0�, which is specified by
Eq. �13�, and the contribution from all other wavenumbers may be
filtered out due to the rapidly oscillatory integral in the expression
for the far field. By the way, it will be noted that the origin of the
spherical coordinates shall be coincident with the origin of the
plate’s coordinates. Besides, the � and � axes shall be orientated
along the x and z axes for the plate’s coordinates, respectively.

Fig. 1 An infinite laminated composite plate with Cartesian co-
ordinate system
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4 Numerical Examples and Discussion
In our previous paper �14�, when symmetric and antisymmetric

laminates are driven by a point force, the curves for their far-field
sound radiation levels are almost the same; the problems such as
on what cases their curves would display differences have not
been addressed. In this section, numerical results based on Eq.
�12� are presented for the far-field acoustic radiation from a lami-
nated composite plate. As depicted in Table 1, two lamination
schemes, i.e., symmetric �75/60/45/45/60/75� and antisymmetric
�75/60/45/–45/–60/–75� plies are used for numerical calculation.

As a standard procedure, the sound pressure levels at the obser-
vation point are normalized with reference to 1 �Pa pressure and
corrected to the field point �R0=1.0 m, �0=�0=45 deg�.

When we examine the elements L̃kl in Eq. �4� through the lami-
nated composite plate theory �see Appendixes A and B in Ref.
�14��, the bending of a laminated composite plate includes the
contribution of the in-plane motions due not only to Poisson’s
effect but also to the particular feature of the laminated plate, i.e.,
extension-bending coupling. In order to induce different types of
motions, i.e., bending and in-plane vibrations, several load cases,
namely, point, line, and uniformly distributed forces in different
directions are applied to the plates. In the numerical calculation,
the driving points for the point, line forces are located at �0.0, 0.0�
and 0.0, respectively, and the driving rectangle for uniformly dis-
tributed forces is with dimension of 0.01�0.01 and centered on
the point �0.0, 0.0�.

As shown in Figs. 2, 5, and 8, the symmetric and antisymmetric
laminates are excited by longitudinal forces; in this case, the in-
plane displacement components would be excited and dominant
compared with transverse displacement. For further discussion,
the plates are also driven by transverse forces, as well as by a
combination of in-plane and transverse forces.

In Fig. 2, the numerical results for the acoustic radiation are
presented for the plates driven by a longitudinal point force Q1
=1.0 N. The far-field sound pressure levels for the antisymmetric
laminates are far greater than those for the symmetric laminates.
Nevertheless, when the plates are driven by a transverse point
force Q3=1.0 N, the curves in Fig. 3 show that the sound pres-
sure levels for the antisymmetric laminates are almost identical to
those for the symmetric laminates.

When the driving point forces are the combination of the lon-
gitudinal and transverse forces, there is one remarkable feature
arresting our attention. Shown in Fig. 4, the curves have almost no
differences with those in Fig. 3, which confirms in an explicit
numerical way that the contribution from the in-plane motions has
trivial impact on the total acoustic field, and this is why almost all
of the publications are dedicated to the sound radiation induced by
transverse motions.

What should be pointed out is that the superposition principle in
linear acoustics still works here. Since the sound pressure level is
a logarithmic quantity, and the sound pressures for the plates
driven by in-plane forces is far smaller than those for the plates
driven by transverse forces, as shown in Figs. 2 and 3, the differ-
ences of the sound pressure levels for the plates driven by in-plane
forces, as shown in Fig. 2, are indistinguishable in Fig. 4.

Shown in Figs. 6 and 7, the plates are driven by a transverse
line force T3=1.0 N /m and by a combination of a longitudinal
line force T1=1.0 N /m and a transverse line force T3
=1.0 N /m, respectively. Shown in Figs. 9 and 10, the plates are
driven by a transverse distributed force Qv3=1.0 N /m2 and by a
combination of a longitudinal distributed force Qv1=1.0 N /m2

and a transverse distributed force Qv3=1.0 N /m2, respectively.

Table 1 Parameter values of the laminated composite plates

Ply No.
Ex

�k�

�Pa�
Ey

�k�

�Pa� �xy
�k� �yx

�k�

�k�

�kg /m3�
h�k�

�m�
Ply angle

�deg�

1 3�1010 3�1011 0.03 0.3 7800 0.0015 75
2 2�1010 2�1011 0.03 0.3 7800 0.0015 60
3 1�1010 1�1011 0.03 0.3 7800 0.0015 45
4 1�1010 1�1011 0.03 0.3 7800 0.0015 �45
5 2�1010 2�1011 0.03 0.3 7800 0.0015 �60
6 3�1010 3�1011 0.03 0.3 7800 0.0015 �75

Fig. 2 Numerical results for the far-field acoustic radiation
from symmetric and antisymmetric laminates „Q1=1.0 N…

Fig. 3 Numerical results for the far-field acoustic radiation
from symmetric and antisymmetric laminates „Q3=1.0 N…
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The curves in Figs. 5–7 and in Figs. 8–10 show the similar afore-
mentioned features, which correspond to the plates driven by line
and distributed forces, respectively.

From Figs. 2–10, we make the following concluding remarks:

�1� As stated in Refs. �13,14�, the extension-bending coupling
stiffnesses Bij are equal to zero for symmetric laminates. So
for this type of symmetric laminates, the extensional and
bending motions are coupled only through Poisson’s ratios;
in particular, if Poisson’s ratios are small enough, e.g., the
condition of the well known thin plate or laminate defini-
tion is satisfied, they can be fully decoupled from each
other. This is why the sound radiation levels for the sym-
metric laminates driven by longitudinal forces are far more
smaller than those for the antisymmeric laminates, as
shown in Figs. 2, 5, and 8.

�2� While for asymmetric laminates, their extension-bending
coupling stiffnesses Bij are not equal to zero, their exten-
sional and bending motions are coupled. However, this
coupling effect is relatively small in some cases, as shown
in Figs. 4, 7, and 10, since the curves in these figures are
almost identical to those in Figs. 3, 6, and 9; that is, the
additional point, line, and distributed forces have little im-

pact in the sound pressure levels shown in Figs. 4, 7, and
10. Nevertheless, this coupling effect in the dynamics of
asymmetric laminates shall be dealt with carefully once the
longitudinal motions are dominant, as shown in Figs. 2, 5,
and 8, which remind us that if the longitudinal driving
forces in the asymmetric laminates are far greater than the
transverse forces, the extensional-bending coupling must be
taken into account. For example, if we make a measure-
ment on the sound pressure from a ship hull, which is made
of asymmetric laminate material and driven by a propeller,
this effect shall be considered beforehand.

�3� Whatever type of composite laminated plates, symmetric or
asymmetric, are driven by transverse forces, as well as by a
combination of longitudinal and transverse forces, the
bending of the plates would be so dominant in the acoustic
field that the contribution from the in-plane motions is
trivial. In these cases, the lamination schemes of the lami-
nates are of little significance in its vibration and acoustic
radiation.

Fig. 4 Numerical results for the far-field acoustic radiation
from symmetric and antisymmetric laminates „Q1=1.0 N and
Q3=1.0 N…

Fig. 5 Numerical results for the far-field acoustic radiation
from symmetric and antisymmetric laminates „T1=1.0 N/m…

Fig. 6 Numerical results for the far-field acoustic radiation
from symmetric and antisymmetric laminates „T3=1.0 N/m…

Fig. 7 Numerical results for the far-field acoustic radiation
from symmetric and antisymmetric laminates „T1=1.0 N/m and
T3=1.0 N/m…
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5 Conclusions
Analytical expressions are derived for the vibration and far-

field acoustic radiation from a fluid-loaded laminated composite
plate, which is excited by three types of mechanical drives: point,
line, and uniformly distributed forces in the longitudinal and
transverse directions. This work is an extension of that done by
Yin et al. �14�. Through numerical results, it is shown that the
lamination schemes of the laminated composite plate play an im-

portant role in its far-field acoustic radiation, especially when the
plies of the plate are asymmetric with its middle plane.

References
�1� Gorman, D. J., 2005, “Free In-Plane Vibration Analysis of Rectangular Plates

With Elastic Support Normal to the Boundaries,” J. Sound Vib., 285, pp.
941–966.

�2� Gorman, D. J., 2006, “Exact Solutions for the Free In-Plane Vibration of
Rectangular Plates With Two Opposite Edges Simply Supported,” J. Sound
Vib., 294, pp. 131–161.

�3� Smith, J. D., 2007, “Symmetric Wave Corrections to the Line Driven, Fluid
Loaded, Thin Elastic Plate,” J. Sound Vib., 305, pp. 827–842.

�4� Mace, B. R., 1980, “Sound Radiation From a Plate Reinforced by Two Sets of
Parallel Stiffeners,” J. Sound Vib., 71, pp. 435–441.

�5� Mead, D. J., and Yaman, Y., 1991, “The Harmonic Response of Rectangular
Sandwich Plates With Multiple Stiffening: A Flexural Wave Analysis,” J.
Sound Vib., 145, pp. 409–428.

�6� Rumerman, H. M. L., 1975, “Vibration and Wave Propagation in Ribbed
Plates,” J. Acoust. Soc. Am., 57, pp. 370–373.

�7� Keltie, R. F., 1993, “Structural Acoustic Response of Finite Rib-Reinforced
Plates,” J. Acoust. Soc. Am., 94, pp. 880–887.

�8� Cuschieri, J. M., and McCollum, M. D., 1996, “In-Plane and Out-of-Plane
Waves’ Power Transmission Through an L-Shape Junction Using the Mobility
Power Flow Approach,” J. Acoust. Soc. Am., 100, pp. 857–870.

�9� Chakrabarti, A., and Sheikh, A. H., 2007, “Vibration of Composites and Sand-
wich Laminates Subjected to In-Plane Partial Edge Loading,” Compos. Sci.
Technol., 67, pp. 1047–1057.

�10� Hwang, Y. F., Kim, M., and Zoccola, P. J., 2000, “Acoustic Radiation by Point-
or Line-Excited Laminated Plates,” ASME J. Vibr. Acoust., 122, pp. 189–195.

�11� Reddy, J. N., 1984, “A Simple Higher-Order Theory for Laminated Composite
Plates,” ASME J. Appl. Mech., 51, pp. 745–752.

�12� Reddy, J. N., and Liu, C. F., 1985, “A Higher-Order Shear Deformation
Theory for Laminated Elastic Shells,” Int. J. Eng. Sci., 23, pp. 319–330.

�13� Reddy, J. N., 1997, Mechanics of Laminated Composite Plates: Theory and
Analysis, CRC, Boca Raton, FL.

�14� Yin, X. W., Gu, X. J., Cui, H. F., and Shen, R. Y., 2007, “Acoustic Radiation
From a Laminated Composite Plate Reinforced by Doubly Periodic Parallel
Stiffeners,” J. Sound Vib., 306, pp. 877–889.

Fig. 8 Numerical results for the far-field acoustic radiation
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Fig. 9 Numerical results for the far-field acoustic radiation
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Fig. 10 Numerical results for the far-field acoustic radiation
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Transient thermal stresses of a bimaterial specimen with interface
cracks, under uniform cooling by convection, are analyzed by
photothermoelasticity and a coupled temperature-displacement,
finite element scheme. The stress intensity factors of the interface
crack are determined by a multiparameter overdeterministic sys-
tem of equations in a least-squares sense using the experimental
data and by J-integral, numerically. The study showed that a nor-
mal temperature variation can lead to significant stresses due to
the mismatch of thermal expansion coefficients.
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1 Introduction
Photoelasticity is a whole-field optical experimental technique,

which provides the principal stress difference and the orientation
of principal stress direction. With the advent of digital photoelas-
ticity, the analysis of two-dimensional �2D� problems has become
faster and more accurate. In photothermoelasticity, thermal, rather
than mechanical, loads are used. Several investigators have suc-
cessfully used photothermoelasticity to analyze transient thermal
stresses for homogeneous bodies �1�.

Bimaterial interfaces occur in several components of engineer-
ing importance such as electronic packages and bimetal thermo-
stats, and bimaterial strips are simplified models used in the lit-
erature to analyze these. A number of theoretical studies on
bimaterial strips subjected to thermal loading conditions have
been done �2�. Wang and Hsu �2� investigated the steady state
thermal stresses in bimaterial interfaces, photoelastically and nu-
merically. During thermal cycling of bimaterial specimens, the
induced thermal stresses are predominant near the edges of the
interface, which may eventually cause fatigue failure by initiating
interface cracks �3�. Kokini and Smith �1� studied the interfacial
crack problem using photothermoelasticity and evaluated the tran-
sient stress intensity factors �SIFs� for an initially cool, edge-
heated polycarbonate-brass interface, pasted using an epoxy adhe-
sive. They observed a drop in the value of KI, after an initial
steady increase.

In this paper, a bimaterial specimen with symmetric interface
edge cracks, subjected to whole-field cooling by convection, is
studied. This is of key importance because almost all engineering

components are subjected to cyclic variations in temperature be-
tween day and night, and get heated or cooled by convective heat
transfer. The transient thermal stresses are recorded experimen-
tally using digital photothermoelasticity. A transient coupled
temperature-displacement 2D finite element �FE� analysis is also
carried out using a standard FE package and is validated by plot-
ting photoelastic fringe contours, using a postprocessing software
developed in-house �4�. The transient thermal SIFs are evaluated
using the J-integral and compared with those obtained experimen-
tally from photothermoelasticity using the method of least squares
�5�.

2 Experimental Analysis

2.1 Preparation of the Bimaterial Specimen. Polycarbonate
�PSM-1� and aluminum of the same thickness �5.5 mm�, whose
properties are given in Table 1, are initially cut from the sheets to
the dimensions given in Fig. 1. The bonding surfaces are carefully
roughened for perfect bonding. The two machined pieces are first
kept at a slightly elevated temperature �36°C� for about 2 h, by
keeping in the close vicinity of a hot air blower, until they reach
steady state. It is to be noted that the material properties of poly-
carbonate remain invariant in the range −10°C to 55°C �6�.

The adhesive is prepared by mixing a general-purpose polyester
resin, accelerator, and catalyst. Polycarbonate being a polyester-
based plastic, the choice of polyester adhesive ensures a true bi-
material interface. Teflon tapes are placed on the edges, with sili-
con grease applied on them, for easy removal after curing, to form
the two symmetric edge cracks of length 18 mm each. The adhe-
sive is applied on the surfaces to be bonded, light pressure is
applied, and the specimen is allowed to set at the same elevated
temperature conditions for about 6 h. After curing, the Teflon tape
is easily removed, forming the two interface edge cracks, as indi-
cated in Fig. 1.

2.2 Experimental Procedure. Figure 2 is a schematic repre-
sentation of the experimental setup for circular polariscope dark-
field optical arrangement. The bimaterial specimen, bonded at a
relatively high temperature �36°C�, is suddenly exposed to room
temperature �28°C�, and it loses heat to the surroundings purely
by convection. The aluminum and polycarbonate portions of the
specimen tend to contract, each according to their own thermal
expansion coefficients, as their temperatures drop. However, at the
interface, they are bonded and hence restrained to have the same
level of contraction. This gives rise to thermal stresses, predomi-
nantly around the interface region. As the specimen temperature
decreases further, higher stress levels exist. The presence of the
interface crack further intensifies the stresses present at the crack
tip. The dark-field isochromatics are recorded at time intervals of
15 s, successively, using a monochrome charge coupled device
�CCD� camera �Sony XC-ST50�, until steady state is reached
�about 15 min�. A software module is written using VC�� to carry
out automated recording of images at specified time intervals.

Contributed by the Applied Mechanics Division of ASME for publication in the
JOURNAL OF APPLIED MECHANICS. Manuscript received September 16, 2008; final
manuscript received January 16, 2009; published online April 28, 2009. Review
conducted by Thomas W. Shield.

Table 1 Material properties

S.
No. Property Units Aluminum

PSM-1
�6�

1 Density, � g/cc 2.823 1.17
2 Expansion coefficient, � /°C 22.7�10−6 146�10−6

3 Thermal conductivity, k W/m K 142 0.365
4 Specific heat capacity, CP J /g °C 0.963 1.1052
5 Young’s modulus, E GPa 71 2.39
6 Poisson’s ratio, � - 0.33 0.38
7 Material stress fringe value N/mm fringe - 7
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2.3 SIF Evaluation Using the Method of Least-Squares.
Ravichandran and Ramesh �5� gave, for use by experimentalists,
the Cartesian stress components of the stress field equation, for

the top half plane of an interface crack, tangential to a bimaterial
joint, loaded at the boundary as
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where Q=2�2� cosh �
, R=�2��1+w�, S=e−
��−	�, 
= �1 /2��
�ln��G2�1+G1� / �G1�2+G2��, w= �1+�1�G2 / �1+�2�G1, and �i

= �3−vi� / �1+vi�, i=1,2. KIn and KIIn are the stress field param-
eters, 
 is the bimaterial constant, Gi are the shear moduli, and �i
are Poisson’s ratios of the two materials, respectively �i=1,2�.

The method of least-squares described in Ref. �5� is used to
evaluate the multiparameters governing the stress field iteratively.
The fringe order and the corresponding positional coordinates at
fringe locations are collected from the thinned dark-field image in

such a way that, when plotted, they capture the basic geometric
features of the fringe field. Since the number of parameters in-
volved in characterizing the stress field are not known a priori, the
iteration is started with two parameters each of KI and KII series.
The iteration is stopped using the fringe order error minimization
criteria. Using the parameters obtained, the program developed
using VC�� �5� recalculates the fringe orders at every point in the
data field, for reconstruction and visual comparison with the ex-
periment. Using the solution of the parameters thus obtained as

Fig. 1 Aluminum-polycarbonate bimaterial specimen with interface cracks
and dimensions indicated
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starting values, the number of parameters in each series is itera-
tively increased until the convergence error obtained is of the
order of 0.05 �5�.

In order to appreciate the convergence visually, the recon-
structed dark-field image for the steady state condition of the
convection-cooled bimaterial specimen is shown for two-, three-,
and four-parameter solutions in Figs. 3�a�–3�c� with the data
points echoed; the corresponding experimental dark-field image is

shown in Fig. 3�d�. From the four-parameter solution, the values
of KI and KII are 0.084 MPa�m and 0.176 MPa�m, respectively,
and the convergence error obtained is 0.046.

3 Finite Element Modeling
For the bimaterial specimen under study, a half symmetry 2D

model is created using the standard FE package, ABAQUS v6.6, and
the final mesh obtained after mesh-convergence study has 2742
plane stress coupled temperature-displacement, biquadratic ele-
ments �CPS8RT�, as shown in Fig. 4�a�. The interface crack is
created by specifying duplicate nodes along the crack face, and
quarter-point collapsed-quadrilateral elements surround the crack
tip �Fig. 4�b��. Symmetry about the vertical axis �edge AF in Fig.
4�a�� is specified and point F in Fig. 4�a� is roller supported so
that it is not overconstrained.

Simulating the experimental conditions with concern for even
small temperature variations is of key importance in getting a
good comparison with the experiment �7�. Convection heat loss
occurring from all faces has been accounted for in the FE analysis.
The empirical formulas for convection coefficient of natural con-
vection in still air at atmospheric pressure �8� are used. Convec-
tion coefficient for all vertical faces �edges BC and DE in Fig.
4�a� and the front and back faces� is 1.42�
T /L�0.25 as for a ver-
tical plate and that for the horizontal faces �edges AB and CD in
Fig. 4�a�� is 1.32�
T /L�0.25, where, L is the characteristic length
dimension computed by dividing the area of the face by its perim-
eter, and 
T represents the difference in temperature from the
ambient. Convection coefficient values, thus specified, are tem-

Fig. 2 Circular polariscope dark-field arrangement

Fig. 3 SIF evaluation for steady state condition of whole-field
convection-cooled bimaterial specimen

Fig. 4 „a… FE mesh and „b… zoomed FE mesh near the crack tip
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perature dependent. The body heat flux, equivalent to the heat lost
due to convection from front and back faces, is −2h
T /B, where
B is the thickness of the specimen. This is incorporated for the
entire bimaterial specimen body by defining a user subroutine �9�.
Convection heat loss from the crack faces to the ambient is neg-
ligible and they are modeled as completely insulating. The bottom
face of aluminum �edge EF in Fig. 4�a�� is placed on a wooden
block during the course of the experiment and hence is insulated.

4 Experimental and Numerical Results
The transient dark-field isochromatics for the polycarbonate

portion of the bimaterial specimen, cooled by convection from
36 °C to 28 °C, is given in Figs. 5�a�–5�d�, for a few time steps,
in the vicinity of the crack tip. A transient fully coupled
temperature-displacement analysis is performed and the postpro-
cessing software of Karthick Babu and Ramesh �4� is used to plot
the isochromatic fringe contours from the FE results �Figs.
5�e�–5�h��, which compare very well with the experimentally re-

corded images. In order to make a whole-field comparison, the
steady state dark-field image is taken using a digital camera �Sony
DSC-P150� with a white light source �Fig. 6�a�� and compared
with the color isochromatic fringe patterns reconstructed from the
FE results �Fig. 6�b��. It is seen that the comparison is very good
and also that a fairly high fringe order is produced even for a
small temperature variation of 8 °C.

SIFs have been evaluated experimentally only from the time
step at 300 s up to steady state at 600 s, as sufficient data could be
picked up only from that stage. The comparison between the SIFs
evaluated experimentally and those evaluated numerically by
J-integral is given in Fig. 7. It is seen that the trend of the graphs
is the same, although the numerical estimate is consistently
higher. A probable cause is that the assumption that the crack
faces are insulating might have influenced the temperature distri-
bution around the crack and hence the SIFs. It can also been seen
from the graph that KII dominates throughout, indicating that the
shearing stresses are dominant, and both KI and KII increase
monotonically to steady state.

As an attempt to increase the thermal load on the bimaterial
specimen, the ambient temperature was brought down further, by
3°C, to 25°C. It was observed that the interface crack propa-
gated quickly, which is seen in the record of isochromatics �Fig.
8�.

5 Closure
Convection-cooled interface-cracked bimaterial specimen has

been analyzed experimentally using digital photothermoelasticity
and using FE method and they compare well. It has been found
that for bimaterial specimens such as this, even a small tempera-
ture variation in the order of 8 °C produces high interfacial ther-
mal stresses, which are predominantly shear. Although when the
specimen is heated along the edge, the transient KI peaks to a
value higher than the steady state KI �1�, for the case of uniform
cooling by convection, the steady state SIFs are maximum and
there is no such peak observed. In design engineering practice, for

Fig. 5 Transient isochromatic fringe patterns with monochromatic light
source for region surrounding the crack tip cooled by convection to 28 °C
from a bonding temperature of 36 °C. „a…–„d… Experimental isochromatics.
„e…–„h… Isochromatics plotted from FE results.

Fig. 6 Steady-state whole-field isochromatic fringe patterns with white
light source for bimaterial specimen cooled to 28 °C from the bonding tem-
perature of 36 °C. „a… Experimental isochromatics. „b… Isochromatics plot-
ted from FE results.

Fig. 7 Comparison of transient experimental and numerical
SIFs for convection-cooled bimaterial specimen

Fig. 8 Experimental whole-field isochromatic fringe patterns with white
light source for bimaterial specimen cooled to 25 °C from bonding tempera-
ture of 36 °C. „a… Before the crack propagated. „b… After the crack
propagated.
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bimaterial specimens such as this, it is important to study the case
of uniform cooling by convection. The current study has shown
that only the steady state stresses are a maximum, and it is there-
fore both necessary and sufficient that a steady state analysis be
carried out in design engineering practice.
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